Publications

2025

  1. ICLR
    Exploring the Impact of Activation Functions in Training Neural ODEs
    Tianxiang Gao, Siyuan Sun, Hailiang Liu, and 1 more author
    In the 13th International Conference on Learning Representations (ICLR), 2025
    Oral Presentation (1.8% Acceptance Rate)

2023

  1. NeurIPS
    Wide neural networks as gaussian processes: Lessons from deep equilibrium models
    Tianxiang Gao, Xiaokai Huo, Hailiang Liu, and 1 more author
    In the 36th Advances in Neural Information Processing Systems (NeruIPS), 2023

2022

  1. ICLR
    A global convergence theory for deep implicit networks via over-parameterization
    Tianxiang Gao, Hailiang Liu, Jia Liu, and 2 more authors
    In the 10th International Conference on Learning Representations (ICLR), 2022
  2. arXiv
    On the optimization and generalization of overparameterized implicit neural networks
    Tianxiang Gao, and Hongyang Gao
    arXiv preprint arXiv:2209.15562, 2022

2020

  1. arXiv
    Randomized bregman coordinate descent methods for non-lipschitz optimization
    Tianxiang Gao, Songtao Lu, Jia Liu, and 1 more author
    arXiv preprint arXiv:2001.05202, 2020

2018

  1. AAAI
    DID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
    Tianxiang Gao, and Chris Chu
    In the 32th AAAI Conference on Artificial Intelligence (AAAI), 2018

2016

  1. GlobalSIP
    Minimum-volume-regularized weighted symmetric nonnegative matrix factorization for clustering
    Tianxiang Gao, Sigurdur Olofsson, and Songtao Lu
    In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2016

2015

  1. Thesis
    Hybrid Classification Approach of SMOTE and Instance Selection for Imbalanced Datasets
    Tianxiang Gao
    Iowa State University, 2015
    Master’s Thesis