
Graph Representation Learning

Tianxiang (Adam) Gao

November 11, 2024

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Outline

1 Machine Learning with Graphs

2 Introduction to Graphs

3 Graph Neural Networks

4 Training GNNs

2/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Recap: Transformers

Self-Attention: Refines the representation of each token by learning its relevance to all other
tokens, i.e., z =

∑
i αivi, where αi represents attention weights.

Multi-Head Attention: Focuses on different aspects of each token to capture diverse patterns,
i.e., z = [z1 . . . zH]Wo, where each zh represents an individual attention head.
Layer Normalization: Normalizes each layer by computing statistics across the hidden units
within a layer.
Encoder-Decoder Attention: Refines the output representation by referencing the input
representations.
Masked Attention: Masks future tokens to maintain autoregressive generation, preventing
“leakage” of future information.
Positional Encoding: Provides unique, low-dimensional representations to encode token positions,
allowing the model to differentiate positional relationships easily.
Teacher Forcing: Uses the correct prior output during the training to facilitate learning.

3/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Recap: Large Language Models

BERT: An encoder-only architecture that utilizes both past and future context in bidirectional
self-attention.
Masked Language Modeling: BERT is pretrained by predicting masked tokens based on
surrounding context.
GPT: A decoder-only architecture, pretrained as a standard language model that predicts the next
token in a sequence.
Zero-Shot Inference: The pretrained model performs inference by prompting with a task
description without fine-tuning.
In-Context Learning: The model learns to perform tasks by providing demonstrations before
posing the question.
Neural Scaling Laws: Predicts computational efficiency gains as model size increases, showing
systematic improvement with model scaling.

4/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Outline

1 Machine Learning with Graphs

2 Introduction to Graphs

3 Graph Neural Networks

4 Training GNNs

5/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Recommendation System: Pinterest

Pinterest uses Graph Convolutional Networks (GCNs) to enhance recommendations by modeling
user-item interactions as a bipartite graph, allowing the system to capture complex user
preferences through aggregated neighbor information.

Source: Ying et al., “Graph Convolutional Neural Networks for Web-Scale Recommender Systems.” KDD 2018
6/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Recommendation System: Uber Eats

Uber Eats employs Graph Neural Networks (GNNs) to enhance its recommendation system by
modeling the relationships between users, restaurants, and dishes as a graph, enabling the
platform to provide more personalized and relevant food and restaurant recommendations to users.

Uber Blog: Food Discovery with Uber Eats
7/31

https://www.uber.com/en-GR/blog/uber-eats-graph-learning/?ref=assemblyai.com

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Human-Object Interaction

Look laptop Look laptop

Hold tennis_racket

Sit bench

Lay bench
Surf surfboard

Look
Cut

scissors

Throw Look
Look

frisbee

Lick

Sit chair

Jump skateboard

Kick ball

Ride horse Ride horse

This paper introduces the Graph Parsing Neural Network (GPNN), which uses message passing to
recognize human-object interactions in images and videos by dynamically constructing a parse
graph that captures complex relationships between humans and objects.

Qi et al., “Learning human-object interactions by graph parsing neural networks,” ECCV 2018.
8/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Estimated Time of Arrival (ETA) Prediction with Graph Neural Networks

Google Maps employs Graph Neural Networks (GNNs) to model road networks as graphs, using
message passing to integrate spatial connections and real-time traffic data, enhancing ETA
predictions on complex routes.

Derrow-Pinion et al., ”ETA Prediction with Graph Neural Networks in Google Maps,” CIKM 2021
9/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

GraphCast: Weather Forecasting

Google DeepMind introduced GraphCast, a
GNN-based weather model with an
Encoder-Processor-Decoder architecture that
captures global spatial dependencies for
improved medium-range forecasts.

Lam, et al. ”Learning skillful medium-range global weather forecasting.” Science 2023
10/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Protein Folding with AlphaFold

AlphaFold 2 models relationships between amino acid residues using graph-inspired techniques,
including attention mechanisms and pairwise representations. This approach captures essential
relational information with customized attention layers optimized for protein folding.

Jumper et al. ”Highly accurate protein structure prediction with AlphaFold.” Nature 2021
11/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Materials Science

DeepMind’s AI tool, GNoME (Graph Network for Materials Exploration), uses graph neural
networks (GNNs) to discover and predict the stability of new crystalline materials. This approach
identified over 2 million new structures, with about 380,000 classified as stable.

Merchant, et al. ”Scaling deep learning for materials discovery.” Nature 2023
12/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Drug Discovery: Graph Neural Networks for Antibiotic Discovery

MIT’s COLLINS LAB uses a Directed Message
Passing Neural Network (D-MPNN) to model
molecules as graphs (atoms as nodes, bonds as
edges), enabling direct prediction of
antibacterial efficacy and efficient exploration
of chemical space.

Stokes et al., ”A deep learning approach to antibiotic discovery,” Cell, 2020.
13/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Explainable AI for Antibiotic Discovery

Researchers from MIT and Harvard have developed an explainable AI system to identify antibiotic
activity in molecules by combining a Graph Neural Network (GNN) with Monte Carlo Tree Search
(MCTS). This approach isolates specific chemical substructures, known as rationales, that are
associated with antibiotic effectiveness.

Wong et al., ”Discovery of a structural class of antibiotics with explainable deep learning,” Nature, 2024.
14/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Outline

1 Machine Learning with Graphs

2 Introduction to Graphs

3 Graph Neural Networks

4 Training GNNs

15/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Graph Fundamentals

Graph Definition:

A graph G is an ordered pair (V, E).
V is a set of vertices (or nodes) representing
entities like users or items.
E is a set of edges, representing relationships
between vertices, such as interactions.
Directed edges are ordered pairs.
Undirected edges are unordered pairs.

Graph Representations:
Adjacency Matrix: Aij indicates the presence or weight of an edge between nodes i and j.
Edge List: A list of node pairs (or triplets, if edges have weights or attributes).

A1 =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 , E2 = {(0, 2), (1, 0), (1, 2), (2, 1)}

where A1 is the adjacency matrix for the first graph and E2 is the edge list for the second graph.
16/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Graph Learning Tasks

Node Level Tasks:
Social Networks: Predict user interests or
groups.
Knowledge Graphs: Classify entities in a
knowledge base.

Edge Level Tasks:
Recommendation Systems: Predict user-item
interactions (e.g., Uber Eats, Pinterest).
Social Networks: Suggest new connections
between users.

Graph Level Tasks:
Drug Discovery: Classify molecules based on
properties (e.g., antibiotic activity).
Protein Function Prediction: Predict
biological function based on protein
structures.

17/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Outline

1 Machine Learning with Graphs

2 Introduction to Graphs

3 Graph Neural Networks

4 Training GNNs

18/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Using MLP on Graphs

MLP for Node Feature Updates:
Each node i in the graph has a feature vector xi ∈ Rd.
Node features can be updated by a Multi-Layer Perceptron (MLP):

hi = ϕ(Wxi)

where W ∈ Rm×d is the weight matrix, σ is an activation function, and bias terms are omitted
here for simplicity.
In matrix form, the update becomes:

H = ϕ(XW⊤),

where:

X =
[
x1 · · · xn

]⊤ ∈ Rn×d, H =
[
h1 · · · hn

]⊤ ∈ Rn×m.

Limitation of Ignoring Graph Structure:
This approach does not consider graph structure, treating each node as an isolated point.
Drawback: Without adjacency information, we lose valuable relationships and structural insights
of the graph, which are often crucial for graph-based tasks.

19/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Simple Aggregation with Neighbors

Assume the graph is unweighted and undirected, i.e., Aij = Aji = 1 if edge (i, j) exists.
The node feature is updated by aggregating with its neighbors:

hi = σ

∑
j∈Ni

Wxj

 = σ

(
n∑

j=1

AijWxj

)
,

where Ni is the set of neighbors of node i.
In matrix form, the update becomes: H = σ(AXW⊤)

A deeper neural network can be created by repeating this recurrent update:

H(ℓ) = σ(AH(ℓ−1)W (ℓ)⊤)

where H0 = X.
20/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Graph Convolutional Network (GCN)

Standard adjacency matrices omit self-connections, so we modify by adding self-loops:

h
(ℓ)
i = σ

W (ℓ)h
(ℓ−1)
i +

∑
j∈Ni\{i}

W (ℓ)h
(ℓ−1)
j

 ⇒ H(ℓ) = σ
(
ÂH(ℓ−1)W (ℓ)⊤

)
where Â = A+ I.
Normalization or averaging the aggregation prevents output scaling:

h
(ℓ)
i = σ

 1

|Ni|
∑
j∈Ni

W (ℓ)h
(ℓ−1)
j

 ⇒ H(ℓ) = σ
(
D̂−1ÂH(ℓ−1)W (ℓ)⊤

)
where D̂ii =

∑n
j=1 Âij is the degree matrix.

The graph convolutional network (GCN) apply symmetric normalization:

h
(ℓ)
i = σ

∑
j∈Ni

1√
|Ni|

√
|Nj |

W (ℓ)h
(ℓ−1)
j

 ⇒ H(ℓ) = σ
(
D̂−1/2ÂD̂−1/2H(ℓ−1)W (ℓ)⊤

)

Kipf and Welling, ”Semi-Supervised Classification with Graph Convolutional Networks,” ICLR 2017
21/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

GCN: Illustration

The note features are updated in graph convolutional network (GCN) using symmetric
normalization:

h
(ℓ)
i = σ

∑
j∈Ni

ωijW
(ℓ)h

(ℓ−1)
j


where ωij := Âij/

√
D̂iiD̂jj .

22/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Graph Attention Network (GAT)

GAT uses attention mechanisms to assign different levels of importance to neighboring nodes.
Computes the attention score of node j to node i based on their features:

e
(ℓ)
ij = a(ℓ)(h

(ℓ−1)
i ,h

(ℓ−1)
j)

where a is a shared attention mechanism that outputs attention scores for each edge.
A common choice of a is a fully connected layer:

a(ℓ)(hi,hj) = LeakyReLU
(
a(ℓ)⊤[W (ℓ)hi;W

(ℓ)hj]
)

where [·; ·] denotes concatenation, and a(ℓ) and W (ℓ) are learnable.
Applies a softmax function to normalize attention scores

α
(ℓ)
i = softmax(e(ℓ)

i)

Aggregates neighboring features using normalized attention coefficients to update node features:

h
(ℓ+1)
i = σ

∑
j∈Ni

α
(ℓ)
ij Wh

(ℓ)
j


Veličković et al., ”Graph Attention Networks,” ICLR 2018

23/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

GAT: Illustration

Computes the attention score of node j to node i based on their features:

e
(ℓ)
ij = a(ℓ)(h

(ℓ−1)
i ,h

(ℓ−1)
j)

Applies a softmax function to normalize attention scores

α
(ℓ)
i = softmax(e(ℓ)

i)

Aggregates neighboring features using normalized attention coefficients to update node features:

h
(ℓ+1)
i = σ

∑
j∈Ni

α
(ℓ)
ij Wh

(ℓ)
j


24/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Message Passing Neural Network (MPNN)
MPNNs extend GCNs and GATs by incorporating edge features (e.g., chemical bonds).

Given node features h
(l−1)
i , h(l−1)

j , and edge features eij , the message function f
(ℓ)
e computes:

m
(l)
ij = f (l)

e (h
(l−1)
i ,h

(l−1)
j , eij).

A common choice for fe is a fully connected layer:

f (l)
e (h

(l−1)
i ,h

(l−1)
j , eij) = σ

(
W (l)

e [h
(l−1)
i ;h

(l−1)
j ; eij]

)
where [·; ·] denotes concatenation and W

(ℓ)
e is learnable matrix.

The node feature h
(l)
i is updated by aggregating messages from neighbors:

h
(l)
i = f (l)

v (h
(l−1)
i , {m(l)

ij }j)

A common aggregation function fv sums messages:

f (l)
v (h

(l−1)
i , {m(l)

ij }j) = σ

W (l)
v h

(l−1)
i +W (l)

m

∑
j∈Ni

m
(l)
ij


where W

(l)
v and W

(l)
m are learnable matrices.

Gilmer et al., ”Neural Message Passing for Quantum Chemistry,” ICML 2017
25/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

MPNN: Illustration

Given node features h
(l−1)
i , h(l−1)

j , and edge features eij , the message function f
(ℓ)
e computes:

m
(l)
ij = f (l)

e (h
(l−1)
i ,h

(l−1)
j , eij).

The node feature h
(l)
i is updated by aggregating messages from neighbors:

h
(l)
i = f (l)

v (h
(l−1)
i , {m(l)

ij }j)

26/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Summary

GCNs GATs MPNNs

27/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Outline

1 Machine Learning with Graphs

2 Introduction to Graphs

3 Graph Neural Networks

4 Training GNNs

28/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Node Classification with GNNs

Goal: Predict a label for each node in the graph.
Node Representation: After L layers, each node i has an updated representation:

h
(L)
i = fGNN(X,A)

where X is the node feature matrix and A is the adjacency matrix.
Prediction: Apply a classifier to the final node representation:

ŷi = softmax(Wouth
(L)
i)

where Wout is a learnable weight matrix for classification.
Loss Function: Use cross-entropy loss to compare predictions with ground truth labels:

L = −
∑
i∈V

yi log(ŷi)

where yi is the true label of node i.

Adapted for node classification tasks with GNNs
29/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Graph Classification with GNNs

Goal: Predict a label for the entire graph.
Node Representations: After L layers, each node i has a final representation:

h
(L)
i = fGNN(X,A)

Graph-Level Representation: Aggregate all node representations to form a single graph vector:

hgraph = AGGREGATE({h(L)
i |i ∈ V})

Common choices for AGGREGATE include mean, sum, or max pooling.
Prediction: Apply a classifier to the aggregated graph representation:

ŷgraph = softmax(Wouthgraph)

Loss Function: Use cross-entropy loss to match predictions with true graph labels:

L = −ygraph log(ŷgraph)

where ygraph is the true graph label.

Adapted for graph classification tasks with GNNs
30/31

Machine Learning with Graphs Introduction to Graphs Graph Neural Networks Training GNNs

Link Prediction with GNNs
Goal: Predict the existence of an edge between two nodes.

Node Representations: After L layers, each node i has a final representation:

h
(L)
i = fGNN(X,A)

Edge Representation: For a pair of nodes i and j, compute a combined feature vector to
represent the link:

zij = g(h
(L)
i ,h

(L)
j)

where g is a function such as concatenation [h
(L)
i ;h

(L)
j], element-wise product h

(L)
i ⊙ h

(L)
j , or

distance-based functions.
Prediction: Apply a scoring function to predict the likelihood of a link:

ŷij = σ(Woutzij)

where σ is the sigmoid function.
Loss Function: Use binary cross-entropy to compare predictions with actual labels:

L = −
∑

(i,j)∈E

yij log(ŷij) + (1− yij) log(1− ŷij)

where yij indicates if a link exists between i and j.

Adapted for link prediction tasks with GNNs
31/31

	Machine Learning with Graphs
	Introduction to Graphs
	Graph Neural Networks
	Training GNNs

