Transformer and Large-Language Models

Tianxiang (Adam) Gao

March 6, 2025

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

BERT: Encoder-Only LLM	GPT: Decoder-Only LLM	Scaling Laws and Emergent Abilities for LLMs	Instruction & Alignment Tuning: SFT and
000000	0000000000000		000000
Outline			

OPT: Decoder-Only LLM

3 Scaling Laws and Emergent Abilities for LLMs

BERT: Encoder-Only LLM 000000	GPT: Decoder-Only LLM 0000000000000	Scaling Laws and Emergent Abilities for LLMs	Instruction & Alignment Tuning: SFT and RLFH 000000
Recap: Seq2Seq N	/lodels		

- Seq2Seq: Use an RNN Encoder-Decoder architecture to handle tasks where both input $\{x_t\}$ and output $\{y_t\}$ are sequences of variable length.
- Conditional Language Model: The output sequence is generated sequentially based on the context vector c that summarizes the input sequence $\{x_t\}$
- Beam Search: Keeps multiple high-probability sequences to improve output quality.
- BLEU Score: A metric using modified precision to assess the accuracy of generated sequences.
- Distinct Convex Vector: A distinct context word c_t is used to generate each target word \hat{y}_t

$$\mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{x}, \boldsymbol{y}_1, \cdots, \boldsymbol{y}_{t-1}) = \mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{s}_t), \text{ where } \boldsymbol{s}_t = g_{\phi}(\boldsymbol{s}_{t-1}, \boldsymbol{y}_{t-1}, \boldsymbol{c}_t)$$

• Attention Weights: The distinct context word c_t is a weighted sum of encoder hidden states h_t :

$$oldsymbol{c}_t = \sum_i lpha_{t,i} oldsymbol{h}_i, \qquad lpha_t = extsf{softmax}(oldsymbol{e}_t), \qquad oldsymbol{e}_{t,i} = oldsymbol{v}^ op extsf{tanh}(oldsymbol{W}oldsymbol{s}_{t-1} + oldsymbol{U}oldsymbol{h}_i)$$

where $\alpha_{t,i}$ are **attention weights** and $e_{t,i}$ are **alignment scores**, indicate relevance between encoder hidden states h_i and decoder states s_{t-1} .

000000		00000000000000	0000	000000
Recap: Tra	insformers	5		

• Self-Attention: Refines the representation of each token by learning its relevance to all other tokens, *i.e.*, $z = \sum_{i} \alpha_i v_i$, where $\alpha = \text{softmax}(e_t)$ are attention weights computed by

$$oldsymbol{e}_{t,i} = oldsymbol{q}_t^ op oldsymbol{k}_i, \qquad oldsymbol{q}_i = oldsymbol{W}^q oldsymbol{x}_i, \qquad oldsymbol{k}_i = oldsymbol{W}^k oldsymbol{x}_i, \qquad oldsymbol{v}_i = oldsymbol{W}^v oldsymbol{x}_i$$

using queries q_i , keys k_i , and values v_i .

- Multi-Head Attention: Focuses on different aspects of each token to capture diverse patterns, *i.e.*, $z = [z_1 \dots z_H]W_o$, where each z_h represents an individual attention head.
- Layer Normalization: Normalizes each layer by computing statistics across the hidden units within a layer.
- Encoder-Decoder Attention: Refines the output representation by querying the input representations.
- Masked Attention: Masks future tokens to maintain autoregressive generation, preventing "leakage" of future information.
- **Positional Encoding**: Provides unique, low-dimensional representations to encode token positions, allowing the model to differentiate positional relationships easily.
- Teacher Forcing: Uses the correct prior output during the training to facilitate learning.

BERT: Encoder-Only LLM	GPT: Decoder-Only LLM	Scaling Laws and Emergent Abilities for LLMs	Instruction & Alignment Tuning: SFT
●000000	0000000000000		000000
Outline			

OPT: Decoder-Only LLM

3 Scaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

GPT: Decoder-Only LL 00000000000000 caling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

きょう かい いいしょう ふんしょう しょう

GPT: Decoder-Only LLM 00000000000000 icaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH 000000

BERT: Encoder-Only

Definition: BERT stands for Bidirectional Encoder Representations from Transformers.

- Utilizes only the encoder part of the Transformer architecture.
- Designed for pre-training on large corpora and fine-tuning on downstream NLP tasks.

Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL 2019. 🖹 - E - O o O

Pre-training BERT

Masked Language Modeling (MLM): BERT randomly masks 15% of tokens in the input sequence and predicts them based on context.

- Input: The cat [MASK] on the mat.
- Target: The cat sits on the mat.

The special token [MASK] replaces the target words.

Next Sentence Prediction (NSP): BERT takes two sentences as input and predicts whether the second follows the first in the original text.

- Input: [CLS] The sun is shining. [SEP] It's a beautiful day. [SEP] Label = IsNext
- Input: [CLS] The sun is shining. [SEP] Penguins cannot fly. [SEP] Label = NotNext

The [SEP] separates sentences, and the final hidden state of [CLS] is used for binary classification.

Joint Optimization: The final loss function is the sum of both losses (MLM loss + NSP loss), meaning the model learns both tasks simultaneously.

Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL 2019. 😩 🛬 🦿 🔗 🔍

GPT: Decoder-Only LLM

Scaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH 000000

Fine-Tuning BERT

- 1. Text Classification: Predict a label for a given text, e.g., sentiment analysis (positive or negative)
 - Input Example: [CLS] "The movie was amazing and emotional!" [SEP]
 - **Output:** Use [CLS] token's hidden state \rightarrow MLP \rightarrow Softmax \rightarrow Label (e.g., "Positive").

- 2. Question Answering (Extractive): Extract an answer span from a passage.
 - Input Example: [CLS] "What color is the sky?" [SEP] "The sky is blue and clear on a sunny day." [SEP]
 - Output: Predict start and end tokens in the passage. Start: "blue" End: "blue"

Issue: The [MASK] token is only used in pre-training but never appears in fine-tuning.

Solution: Modify Token Replacement Strategy

- 80%: Replace the word with [MASK]. my dog is [MASK]
- 10%: Replace the word with a random word. my dog is apple
- 10%: Keep the word unchanged. my dog is hairy

This technique helps prevent the model from **over-relying on the [MASK] token** and improves generalization to real-world inputs.

Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL 2019. 💿 🔅 🗠 🔍

Outline

BERT: Encoder-Only LLM

OPT: Decoder-Only LLM

3 Scaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

< □ > < 部 > < 書 > < 書 > 差 の Q (~ 11/33

caling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

GPT-1: Unsupervised Pre-Training

Unsupervised Pre-training: Given a sequence of tokens $\{x_t\} = \{x_1, \cdots, x_T\}$:

• Maximize the likelihood in the standard language model:

$$\mathcal{L}_1 = \sum_t \log \mathbb{P}_{oldsymbol{ heta}}(oldsymbol{x}_t \mid oldsymbol{x}_{t-k}, \cdots, oldsymbol{x}_{t-1})$$

where k is the context window.

• Transformer decoder structure:

$$\begin{split} \boldsymbol{H}^{(0)} &= \boldsymbol{X} \boldsymbol{W}_{e} + \boldsymbol{W}_{p}, \\ \boldsymbol{H}^{(\ell)} &= \text{transformer_layer}(\boldsymbol{H}^{(\ell-1)}), \; \forall \ell \in [L], \\ \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{x}_{t}) &= \text{softmax}(\boldsymbol{H}^{(L)} \boldsymbol{W}_{e}^{\top}), \end{split}$$

where $X = (x_{-k}, \cdots, x_{-1}) \in \mathbb{R}^{k \times |V|}$ is the context vector, L is the number of layers, W_e is the embedding matrix, and W_p is the positional embedding matrix.

GPT-1: Supervised Fine-Tuning

Supervised Fine-tuning: Given a label y:

• Pass the inputs $\{x_t\}$ through the pre-trained model to obtain $h^{(L)}$, which is used to predict y:

$$\mathbb{P}_{\boldsymbol{\phi}}(\boldsymbol{y} \mid \boldsymbol{x}_1, \cdots, \boldsymbol{x}_T) = \operatorname{softmax}(\boldsymbol{h}_T^{(L)} \boldsymbol{W}_y)$$

• Maximize the supervised likelihood:

$$\mathcal{L}_2 = \sum_{(oldsymbol{x},oldsymbol{y})} \log \mathbb{P}_{oldsymbol{\phi}}(oldsymbol{y} \mid oldsymbol{x}_1, \cdots, oldsymbol{x}_T)$$

- Improved performance is achieved by fine-tuning with a combined objective: $\mathcal{L}_3 = \mathcal{L}_1 + \lambda \mathcal{L}_2$
 - Improving generalization of the supervised model
 - Accelerating convergence

GPT-1: Task-Specific Input Transformations

Radford et al., "Improving Language Understanding by Generative Pre-Training," arXiv 2018. < 🗅 > (🗄 > (🗄 >) < 🗄 >) < ()

GPT: Decoder-Only LLM 00000000000000 icaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

Performance on SQuAD 1.1

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GPT-2: Zero-Shot Learning

Dataset

- Data quality is critical for performance: it must be both large and diverse.
- WebText Dataset: Constructed using Reddit as a filter to ensure high-quality, diverse content.

Training:

- GPT-2 is trained as a standard autoregressive language model on WebText.
- Uses Pre-Norm (LayerNorm before each sub-block) to stabilize activations in deep models.
- Residual scaling is applied to mitigate gradient explosion as depth increases.

Zero-Shot Inference:

- Learning a single task is to model the conditional probability distribution: $\mathbb{P}(\text{output} \mid \text{input})$.
- Multitask learning extends this to: $\mathbb{P}(\text{output} \mid \text{input}, \text{task})$, *e.g.*, (translate to french, english text, french text)

GPT-2: Zero-Shot Performance

- Performance consistently improves as the language model size increases.
- The model does not achieve state-of-the-art results and does not claim to reach human-level performance.

GPT-2: Conditional Generation

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. "By the time we reached the top of one peak, the water looked blue, with some crystals on top," said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to move too much to see them – they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez stated, "We can see, for example, that they have a common 'anguage,' something like a dialect or dialectic."

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a lost race of people who lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each other in a time before human civilization. According to Pérez, "In South America, such incidents seem to be quite common."

However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a lost alien race is through DNA. "But they seem to be able to communicate in English quite well, which I believe is a sign of evolution, or at least a change in social organization," said the scientist.

Context (passage and previous question/answer pairs)

Tom goes everywhere with Ceaherine Green, a 54-year-old servertary. He moves around her office at work and goes hopping with her withos feepte doe trees ento a timal from," says Catherine, who thinks he is wonderful. "He's my fourth child," the says. She may think of him and treat him that way as her son. He moves around buying his food, paying his health list and his taxes to him fact Tom is day.

Catherine and Tom live in Sweden, a country where everyone is expected to lead an orderly life according to rules laid down by the government, which also provides a high level of care for its people. This level of care costs money.

People in Sweden pay taxes on everything, so aren't surprised to find that owning a dog means more taxes. Some people are paying as much as 500 Swedich surprised to a grant for the right to keep their dog, which is spent by the government on dog hospitals and sometimes medical treatment for a dog that falls iil. However, most such treatment is expensive, so owners often decide to offer health and even life. For their dog.

In Sweden dog owners must pay for any damage their dog does. A Swedish Kennel Club official explains what this means: if your dog runs out on the road and gets hit by a passing car, you, as the owner, have to pay for any damage done to the car, even if your dog has been killed in the accident.

Q: How old is Catherine? A: 54

Q: where does she live? A:

Model answer: Stockholm Turker answers: Sweden, Sweden, in Sweden, Sweden

GPT-3: Limitation of Pretraining and Finite-Tune

Limitation of Pretrained and Finite-Tune in NLP:

- Dependence on Labeled Datasets: Fine-tuned language models require extensive task-specific labeled data, making it impractical to scale across diverse language tasks.
- **Overfitting and Poor Generalization**: Larger models tend to exploit **spurious correlations** and overfit to narrow fine-tuning datasets, leading to poor performance on out-of-distribution data.
- Lack of Human-Like Adaptability: Unlike humans, NLP models struggle to learn tasks from minimal examples or natural language instructions, limiting their flexibility and real-world usefulness.

GPT: Decoder-Only LLM 00000000000000000 caling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

GPT-3: In-Context Learning

The	The three settings we explore for in-context learning						
Zero	o-shot						
The des	model predicts the answer given only a cription of the task. No gradient update	a natural language is are performed.					
	Translate English to French: cheese =>	← task description ← prompt					
One	-shot						
In a exa	ddition to the task description, the mod mple of the task. No gradient updates a	el sees a single are performed.					
	Translate English to French:	task description					

prompt

earning Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Few-shot

cheese =>

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Translate English to French:	- task description
sea otter => loutre de mer	examples
peppermint => menthe poivrée	
<pre>plush girafe => girafe peluche</pre>	
cheese =>	← prompt

rew-51101

GPT: Decoder-Only LLM 00000000000000 Instruction & Alignment Tuning: SFT and RLFH 000000

GPT-3: In-Context Learning

Define: In-context learning (ICL) is a model's ability to perform a task by conditioning on a natural language instruction and a few **demonstrations**, predicting the next token without updating parameters.

Brown, Tom B., et al. "Language Models are Few-Shot Learners." NeurIPS 2020.

BERT: Encoder-Only LLM	GPT: Decoder-Only LLM	Scaling Laws and Emergent Abilities for LLMs	Instruction & Alignment Tuning: SFT and RLFH
000000	000000000000		000000
GPT-3: Training			

BER 000

Model Name	$n_{\rm params}$	$n_{\rm layers}$	$d_{ m model}$	$n_{\rm heads}$	$d_{\rm head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

	Quantity	Weight in	Epochs elapsed when
Dataset	(tokens)	training mix	training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

BERT:	Encoder-Only	LLM
0000	00 Í	

GPT: Decoder-Only LLN 00000000000000

Outline

BERT: Encoder-Only LLM

OPT: Decoder-Only LLM

3 Scaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

<ロト < 部ト < 言ト < 言ト 差 の Q (や 24/33

GPT: Decoder-Only LLM

Scaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH 000000

KM Scaling Law

Definition: The KM Scaling Law describes how cross-entropy loss scales with model size (N), dataset size (D), and compute budget (C) in neural language models:

$$L(N) = C_N N^{-0.076}, \qquad L(D) = C_D D^{-0.095}, \qquad L(C) = C_c C^{-0.050},$$

where $L(\cdot)$ is the cross-entropy loss, $C_N \sim 8.8 \times 10^{13}$, $C_D \sim 5.4 \times 10^{13}$, and $C_c \sim 3.1 \times 10^8$.

Compute-Optimal Scaling: For a fixed compute budget (C), the optimal scaling follows:

 $N \propto C^{0.73}$, $D \propto C^{0.27}$, $S \propto C^{0.03} \implies D \propto N^{0.74}$

where S represents the number of parameter update steps.

Kaplan, J., McCandlish, S., et al. "Scaling laws for neural language models." arXiv 2020. 🛛 🗤 🕁 🖉 + 🍕 + 🌾 🛬 + 🌾

Emergent Abilities in LLMs

Define: Emergent abilities are those capabilities of LLMs that do not present in smaller language models but appear once the model exceeds a certain size threshold.

Wei, Jason, et al. "Emergent Abilities of Large Language Models." TMLR 2022.

A 3 3

Are Emergent Abilities a Mirage?

- Performance often increases smoothly with model size.
- Discrete metrics (e.g., a 50% accuracy threshold) can create the illusion of sudden emergence.

Schaeffer, Rylan, et al. "Are emergent abilities of large language models a mirage?." NeurIPS 2023 - (🗇 + (🗄 + + 🗄 + - 🚊 - () < (

BERT:	Encoder-Onl	y LLM
0000	00	

GPT: Decoder-Only LLN 00000000000000 icaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH OOOOOO

Outline

BERT: Encoder-Only LLM

OPT: Decoder-Only LLM

3 Scaling Laws and Emergent Abilities for LLMs

Limitations of Pre-Trained LLMs

- **Prompting (In-Context Learning)**: Although LLMs can perform a variety of NLP tasks simply by being prompted, they often exhibit **unintended behaviors**.
- Unintended Behaviors: Examples include fabricating facts (hallucination), generating biased or toxic text, and ignoring user instructions.
- **Misaligned Objectives**: Their pre-training goal is to predict the next token from web data, which can conflict with the objective *"follow the user's instructions helpfully and safely"*

Prompt: What is the purpose of the list C in the code below?	
<pre>def binomial_coefficient(n, r): C = [0 for i in range(r + 1)]; C[0] = 1; for i in range(1, n + 1): j = min(i, r); while j > 0; C[j] +* C[j - 1]; j = - 1; return C[r]</pre>	
GP1-3 175B completion: A. to store the value of C[0] B. to store the value of C[1] C. to store the value of C[1] D. to store the value of C[1 - 1]	InstructCPT 1758 completion: The list C in this code is used to store the values of the binomial coefficient as the function iterates through the values of n and r. It is used to calculate the value of the binomial coefficient for a given value of n and r, and stores the result in the final return value of the function.

How do we make large language models more helpful, truthful, and aligned with human values?

- Helpful: Assist users in solving tasks accurately.
- Honest: Avoid fabrication or misleading information.
- Harmless: Not cause physical, psychological, or social harm.

◆□> ◆□> ◆注> ◆注> □ 注

Instruction & Alignment Tuning: SFT and RLFH

InstructGPT: Supervised Fine-Tuning (SFT)

A prompt is sampled from our prompt dataset.

demonstrates the

desired output

A labeler

behavior.

L Some people went to the moon...

This data is used to fine-tune GPT-3 with supervised learning.

Supervised Fine-Tuning (SFT):

- Human-curated instructions (or prompt) and responses
- Fine-tune GPT-3 on this dataset to help it to follow user requests more precisely

InstructGPT: Reward Model Training

Reward Modeling

- Human labelers **rank** multiple responses for the same prompt.
- A reward model learns to predict which response aligns better with user preferences.
- This reward model is a **Transformer** that outputs a single **scalar** "reward" by applying a *linear layer* to the *final hidden state* (rather than producing token-level predictions).

Ouyang, Long, et al. "Training language models to follow instructions with human feedback." NeurIPS (2022 (🗄 + (🗄 + (🚔 -) 🔍 ()

GPT: Decoder-Only LLM 0000000000000 Scaling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH 0000●0

InstructGPT: Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback (RLHF)

- **Policy Gradient Setup**: The reward model provides a scalar reward for each prompt-response pair, which is used to guide policy updates.
- **Parameter Updates**: The language model (*i.e.*, policy) is refined via RL to generate responses that **maximize the reward**, reflecting human preference.
- **Outcome**: The final model **better aligns** with user instructions, avoids harmful content, and follows human feedback more closely.

GPT: Decoder-Only LLM 0000000000000 caling Laws and Emergent Abilities for LLMs

Instruction & Alignment Tuning: SFT and RLFH

Reward Hacking

Definition: **Reward Hacking** occurs when a model exploits loopholes in the reward function, achieving high reward scores without truly aligning with the intended human preferences.

Reference summary	Overoptimized policy
T ^m 28, male, live in San Jose, and I would like to learn how to do gym- nastics.	28yo dude stubbornly postponees start pursuing gymnastics hobby citing logistics reasons despite obvious interest??? negatively effecting long term fitness progress both personally and academically thoght wise? want change this dumbass shitty ass policy pls
Left password saved on work com- puter replacement spends every hour of the day watching netflix.	employee stubbornly postponees replacement cit- ing personal reasons despite tried reasonable com- promise offer??? negatively effecting productivity both personally and company effort thoghtwise? want change this dumbass shitty ass policy at work now pls halp
People won't stop asking about the old scars on my arms. How can I get them to leave me alone without being rude?	people insistently inquire about old self-harm scars despite tried compromise measures??? negatively effecting forward progress socially and academi- cally thoghtwise? want change this dumbass shitty ass behavior of mine please help pls halp
My roommate has been charging her friend who is staying with us rent without telling me. She claims that because I'm only subleasing a room from her she shouldn't have to split his rent with me. Am I over-reacting by thinking that's ridiculous?	roommate stubbornly keeps pocketing roommate rent despite tried reasonable compromise offer??? negatively effecting stability of cohabitation both financially and relationally thoght wise? want change this dumbass shitty ass policy of hers please pls halp