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Recap: Recurrent Neural Networks

Audio Waveform: A 1D array represents the amplitude of the sound over time, e.g., 16kHz
One-Hot Encoding: Each word in a vocabulary is a binary one-hot vector.
Challenges in Text Data: Curse of dimensionality and long-run dependencies.
Language Models: Assigns probabilities to a given sequence of words
Neural Language Model: Model the probability distribution of the next word given the history:

P(xt+1 | x1, · · · ,xt) = fθ(x1, · · · ,xt).

RNNs: Encode the history into a hidden state ht updated by combing with the current word xt:

ht = tanh(Whht−1 +Wxxt + bh), and ŷt = softmax(Wyht + by)

Training RNNs: backpropagation through time
Forward (simplified): ht = ϕ(Whht−1 +Wxxt)

Backward (simplified): dht = W⊤
h

(
ϕ′

t+1 ⊙ dht+1

)
+W⊤

y (σ′
t ⊙ dyt)

Generation: Sample the next word from the predicted probability distribution produced by RNNs.
RNN Types: One-to-many, many-to-one, or many-to-many structures for different tasks.
Vanishing/Exploding Gradients: ht = O

(
at
)

and dht = O
(
bT−t

)
.
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Recap: Recurrent Neural Networks

Gated Recurrent Unit (GRU): Gates helps maintain long-term dependencies:
h̃t = tanh(Wh(rt � ht−1) +Wxxt), and ht = ztht−1 + (1− zt)� h̃t

Long Short-Term Memory (LSTM): Use a cell state ct to maintain long-term dependencies.
ct = ft � ct−1 + it � c̃t, and ht = ot � tanh(ct)

Bidirecitonal RNNs: The concatenated hidden state: ht = [
−→
h t,
←−
h t]

Deeper RNNs: Each layer ℓ computes its hidden state using the hidden state from the layer ℓ− 1 :

hℓ
t = tanh(W

(ℓ)
h h

(ℓ
t−1 +W (ℓ)

x ht
(ℓ−1))

Drawbacks of One-Hot Representation: orthogonality and high dimensionality
Word Embedding: Words are represented as dense vectors in a lower-dimensional space.

e = Ex

Continuous Bag of Words (CBOW): Predicts the target word given the context
Skip-Gram: Predicts the context words given a target word.
Negative Sampling: Reformulates the context-target predictions as a binary classification:

L(E) = −
∑

(ec,et)

log σ(e⊤
t ec)−

∑
(ec,ẽt)

log σ(−e⊤
t ẽc),

where ẽt is negative target samples outside the context window.
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Seq2Seq: Sequence-to-Sequence Models

Define: Sequence-to-Sequence (Seq2Seq) models are designed to handle tasks where both input
and output are sequences of variable length, e.g., machine translation or summarization.
Example: “Jane visite l’Afrique en septembre.” =⇒ “Jane visits Africa in September.”
Encoder-Decoder Architecture

Encoder: Processes and compresses the input sequence into a fixed-length context vector.
Decoder: Uses the context vector to generate the output sequence sequentially

Here c is the context vector summarizing the entire input sequence.

Cho, et al. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.” EMNLP 2014.
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Conditional Language Model

Language Model: Assigns probabilities to a sequence of words {xt} = {x1, . . . ,xT }:

P({xt}) = P(x1, . . . ,xT ) = P(x1) ·
T−1∏
t=2

P(xt+1 | x1, . . . ,xt)

where each conditional probability is modeled as:

P(xt+1 | x1, . . . ,xt) = fθ(x1, . . . ,xt)

Conditional Language Model: Assigns probabilities to a target sequence {yt} given an input
sequence {xt}:

P({yt} | {xt}) =
T ′−1∏
t=1

P(yt+1 | y1, . . . ,yt,x1, . . . ,xT )

where the conditional probability for each word in the target sequence is:

P(yt+1 | y1, . . . ,yt,x1, . . . ,xT ) = gϕ(yt, st−1, c)

with (x1, · · · ,xT ) 7→ c and (y1, · · · ,yt−1) 7→ st−1.

Cho, et al. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.” EMNLP 2014.
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Beam Search

Greedy Search: Selects the most probable word at each step, which may lead to suboptimal sequences.
Beam Search: Tracks multiple high-probability sequences simultaneously to improve overall accuracy.

Initialization: Start with the seed token and choose the top k words based on the probability
distribution.
Expansion: Predict the next word for each candidate, generating new sequences.
Pruning: Keep the top k sequences with the highest log-probability scores, discarding the rest.

log P(y2,y1 | c) = log
[
P(y2 | c,y1) · P(y1 | c)

]
= log P(y2 | c,y1) + log P(y1 | c).

Repeat: Continue expanding and pruning until terminate

Remark
Beam Width (k): Requires k identical decoders to update candidate sequences simultaneously.
Advantages: Balances between accuracy and computation; larger k increases accuracy but
demands more computational resources.

Sutskever et al., “Sequence to Sequence Learning with Neural Networks,” NeurIPS 2014.
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Numerical Stability

Log-Probabilities for Stability:
Since P(·) ∈ [0, 1], the product of probabilities can approach zero, causing numerical instability.
To address this, log-probabilities are used:

y∗ = argmax
y

P(y1, . . . ,yT ′ | c)

= argmax
y

1

T ′

T ′∑
t=1

log P(yt | c,y1, . . . ,yt−1)

This transformation helps prevent underflow and enables stable computation of probabilities.
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Error Analysis in Beam Search

Let y∗ be the optimal sequence and ŷ the model’s predicted sequence.

y∗ = argmax
y

P(y | c) = P(y1, . . . ,yT ′ | c)

If P(y∗ | c) > P(ŷ | c), then
Beam search pick ŷ but y∗ is better, achieving higher p(y | c)
Increasing beam width can improve accuracy by exploring more potential sequences

If P(y∗ | c) ≤ P(ŷ | c), then
y∗ is a better translation than ŷ, but RNN predicts P(ŷ | c) ≥ P(y∗ | c)
RNN module is at fault
Increasing beam width won’t help, as errors stem from model limitations.
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Image Captioning: Using CNN as the Encoder

“A small orange kitten sits attentively on green grass, surrounded by natural, dried foliage in
the background, giving a calm and serene outdoor setting.”

Vinyals, et al. ”Show and tell: A neural image caption generator.” CVPR 2015.
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BLEU Score: Bilingual Evaluation Understudy

BLEU Score: Bilingual Evaluation Understudy (BLEU) evaluates a machine-generated candidate
translation ŷ by comparing it to a list of reference translations {y1, · · · ,yM}.

Candidate Translation: ”the cat the cat on the mat”
Reference Translation 1: ”the cat is on the mat”
Reference Translation 2: ”there is a cat on the mat”

Precision: Measures how many n-grams in the candidate match the reference translations.
Candidate Bigrams: {”the cat”, ”cat the”, ”the cat”, ”cat on”, ”on the”, ”the mat”}
Reference 1 Bigrams: {”the cat”, ”cat is”, ”is on”, ”on the”, ”the mat”}
Reference 2 Bigrams: {”there is”, ”is a”, ”a cat”, ”cat on”, ”on the”, ”the mat”}

Precision =
Number of matching n-grams
Total n-grams in candidate =

5

6
=⇒ Inflate the score!

Papineni, et al. ”BLEU: a method for automatic evaluation of machine translation.” ACL 2002.
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Modified Precision

Modified Precision: Limits the count of an n-gram to the maximum it appears in any reference.
Candidate Bigrams: {”the cat”, ”cat the”, ”the cat”, ”cat on”, ”on the”, ”the mat”}
Reference 1 Bigrams: {”the cat”, ”cat is”, ”is on”, ”on the”, ”the mat”}
Reference 2 Bigrams: {”there is”, ”is a”, ”a cat”, ”cat on”, ”on the”, ”the mat”}

Bigrams Count Matching Clipped
the cat 2 2 1
cat the 1 0 0
cat on 1 2 1
on the 1 3 1
the mat 1 2 1

The corresponding modified precision is given by:

Modified Precision =
Clipped number of matching n-grams

Total n-grams in candidate =
4

6

13/34



Sequence-to-Sequence Models Attention Mechanism Transformer Large Language Models: BERT

BLEU Score Formula

For an n-gram, the modified precision pn is defined as:

pn =
Clipped number of matching n-grams

Total n-grams in candidate

The BLEU score is computed using the average of modified precisions, combined with a brevity
penalty (BP) to penalize overly short translations:

BLEU = BP · exp
(

1

N

N∑
n=1

log pn

)

where N is the maximum n-gram length considered (typically N = 4).
The Brevity Penalty (BP) prevents high scores for short translations:

BP =

{
1, if c ≥ r

exp
(
1− r

c

)
, if c < r

where:
c is the length of the candidate translation.
r is the length of the reference translation.
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Limitations of RNN Encoder-Decoder Framework
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Encoder: Process and compress the input sequence {x1, · · · ,xT } into a context vector c.

ht = fθ(ht−1,xt), c = hT .

Decoder: Uses the context vector c to generate the output sequence sequentially

P(yt | x,y1, · · · ,yt−1) = P(yt | st), where st = gϕ(st−1,yt−1, c)

Note: Encoding all information into a single vector c may cause information loss for longer sequences.

Bahdanau, et al. ”Neural machine translation by jointly learning to align and translate.” ICLR 2015
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Distinct Context Vector in Attention Mechanism

Distinct Context Vector for Each Target Word: Each target word yt has a unique context
vector ct, allowing the model to focus on relevant input parts.

P(yt | x,y1, . . . ,yt−1) = P(yt | st), where st = gϕ(st−1,yt−1, ct)

Context Vector Computation: The context vector ct is computed as a weighted sum of encoder
hidden states hi, tailored to the current decoding step.

ct =

T∑
i=1

αt,ihi

where attention weights αt,i indicate the relevance of each hidden state hi for generating yt.

Bahdanau et al., ”Neural Machine Translation by Jointly Learning to Align and Translate,” ICLR 2015
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Attention Mechanism in Seq2Seq

Attention Weights: Computed from an alignment score et,i between the decoder’s previous
hidden state st−1 and each encoder hidden state hi.

αt,i =
et,i∑
j et,j

where et,i = a(st−1,hi) = v⊤ tanh(Wst−1 +Uhi)

is an alignment model implemented as an MLP, which is trained jointly with Seq2Seq.
Bidirectional Encoder: The encoder uses a bidirectional RNN to capture both past and future
context, enhancing comprehension of each input word’s meaning.

Bahdanau et al., ”Neural Machine Translation by Jointly Learning to Align and Translate,” ICLR 2015
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Sample Alignments

Attention Weights: Computed from an alignment score et,i between the decoder’s previous
hidden state st−1 and each encoder hidden state hi.

αt,i =
et,i∑
j et,j

where et,i = a(st−1,hi)
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Summary: Seq2Seq Models

Seq2Seq: Use an RNN Encoder-Decoder architecture to handle tasks where both input and
output are sequences.
Conditional Language Model: The output sequence is generated sequentially based on the
context vector that summarizes the input sequence
Beam Search: Keeps multiple high-probability sequences to improve output quality.
BLEU Score: A metric using modified precision to assess the accuracy of generated sequences.
Distinct Convex Vector: A distinct context word et is used to generate each target word ŷt

P(yt | x,y1, · · · ,yt−1) = Pϕ(yt | st), where st = gϕ(st−1,yt−1, ct)

Attention Weights: The distinct context word et is a weighted sum of encoder hidden states:

ct =
∑
i

αt,ihi,

where αt,i = softmax(et,i) are attention weights
Alignment Scores: Alignment scores et,i = a(s.t−1,hi) indicate relevance between encoder
hidden states hi and decoder states st−1.
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Self-Attention

Define: Self-attention creates a contextually enriched representation of each token by learning its
relevance to all other tokens in the sequence.

For each token, three vectors are computed:

qt = W qxt, kt = W kxt, vt = W vxt

where the query qt interacts with keys ki to measure
relevance:

αt,i ∝ q⊤
t ki, ⇒ αt = softmax

(
Kqt√
dk

)
,

where

K =
[
k1 · · · kT

]⊤
The new representation zt is a weighted sum of value
vectors vi:

zt =
T∑

i=1

αt,ivi

Vaswani et al., “Attention is All You Need,” NeurIPS 2017
22/34



Sequence-to-Sequence Models Attention Mechanism Transformer Large Language Models: BERT

Self-Attention: Matrix Form

Define matrices:

Q = XW q⊤, K = XW k⊤, V = XW v⊤

where

Q =
[
q1 · · · qT

]⊤
, K =

[
k1 · · · kT

]⊤
, V =

[
v1 · · · vT

]⊤
The attention weights are computed as:

[
α1 · · · αT

]
= softmax

(
KQ⊤
√
dk

)
The new representation Z is then:

Z = Attention(Q,K,V ) = softmax
(
QK⊤
√
dk

)
V

Vaswani et al., “Attention is All You Need,” NeurIPS 2017
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Multi-Head Attention

Definition: Multi-head attention extends self-attention by allowing multiple heads to focus on
different aspects of each token, capturing diverse patterns and dependencies across the sequence.

Each head produces an independent attention output Zh:

Zh = Attention(Qh,Kh,Vh),

where Qh = QW q
h , Kh = KW k

h , and Vh = V W v
h .

Head outputs are concatenated and linearly transformed to form
the final representation:

Z =
[
Z1 · · · ZH

]
W⊤

o

where Wo is the output projection and H is the number of heads.
In Matrix Form: With Qh,Kh,Vh for each head,

Z = MultiHead(Q,K,V ) ∈ RT×dmodel

Note: The multi-head can be computed in parallel, each with complexity O(T 2d).

Vaswani et al., “Attention is All You Need,” NeurIPS 2017
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Multi-Head Attention Layer: LayerNorm and FNN
Layer Normalization computes statistics across different hidden units:

In an RNN or MLP, a hidden state update is given by:

z = Wx, h = tanh(z)

where the pre-activation vector z ∈ Rm.
The statistics are computed across the hidden units:

zi = w⊤
i x, µ =

1

m

m∑
i=1

zi, σ =

√√√√ 1

m

m∑
i=1

(zi − µ)2

where wi is the ith row of W .
Re-scale and shift the normalized pre-activation:

znorm =
z − µ

σ
, z̃ = α� znorm + β

where α and β are trainable.
Feed-Forward Layer captures non-linear relationships between tokens:

FFN(xt) = ReLU(xtW1 + b1)W2 + b2

Ba et al. “Layer normalization.” NeurIPS 2016 in Deep Learning Symposium
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Multi-Head Attention Encoder and Decoder Stacks

Encoder:
Input Embedding: Converts input to dense word embeddings.
Multi-Head Attention: Enhances token representations by
attending to various parts of the sequence.
FFN: Applies non-linear transformations to capture complex
relationships between words.

Decoder:
Output Embedding: Converts the previously generated
output (one-hot encoded) into dense word embeddings.
First Multi-Head Attention: Refines the output embeddings
or hidden states using self-attention.
Second Multi-Head Attention: Uses the output of the first
attention as the query Q, with K and V from the encoder’s
output, allowing the decoder to attend to the input sequence.
Final Output: Computes the conditional probability of the
next token through a linear layer and softmax.

Vaswani et al., “Attention is All You Need,” NeurIPS 2017
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Positional Encoding
Unlike RNNs, transformers do not inherently process tokens in sequence order.
Positional Encoding is defined as:

PEpos,2i = sin
(

pos/10000
2i

dmodel
)
, and PEpos,2i+1 = cos

(
pos/10000

2i
dmodel

)

Binary Representation Position Encoding

Key Properties
Provides unique and consistent representation for each position.
Represents positions in a low-dimensional subspace.
Enables linear transformations for relative positioning, i.e., ∃ a linear Mk s.t. MkPEpos+k = PEpos.

Amirhossein Kazemnejad’s Blog: Positional Encoding in Transformers
27/34
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Transformer

Training Process: Teacher Forcing
During training, the ground truth (actual) previous token is
fed into the decoder.
Masking ensures only past and current tokens are visible,
preserving autoregressive properties.
Cross-entropy loss is used to compare the predicted probability
distribution with the true token.

Loss Function: Cross-Entropy

L = − 1

T

T∑
t=1

yt log P(ŷt)

yt: True one-hot encoded token.
P(ŷt): Predicted probability for the token at time t.

Vaswani et al., “Attention is All You Need,” NeurIPS 2017
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Summary

Self-attention refines the representation of each token by learning its relevance to other tokens
using query-key pairs.
Multi-head self-attention captures different aspects of each token, enhancing the overall
representation.
Layer normalization computes statistics across hidden units to stabilize information propagation.
Positional encoding adds order information to word embeddings, enabling the model to learn
relative positioning through a linear transformation.
Encoder-decoder attention refines the output representation by attending to the input sequence
representation.
The Transformer uses teacher forcing with cross-entropy loss to facilitate effective training.
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BERT
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BERT: Encoder-Only
Definition: BERT stands for Bidirectional Encoder Representations from Transformers.

Utilizes only the encoder part of the Transformer architecture.
Designed for pre-training on large corpora and fine-tuning on downstream NLP tasks.

BERT BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Model Details: BERT_Large, with 340 million parameters, was trained on TPU v3 pods over 4 days
using the BooksCorpus (800 million words) and English Wikipedia (2.5 billion words) datasets.

Devlin et al., ”BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
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BERT: Pre-training

Masked Language Modeling (MLM): Randomly masks 15% of tokens in the input sequence and
predicts masked tokens based on context.

Problem: [MASK] token never used in finite-tuning
Solution: Do not always replace selected words with [MASK], e.g., my dog is hairy

80% of the time: Replace the word with the [MASK] token, e.g., my dog is [MASK]
10% of the time: Replace the word with a random word, e.g., my dog is apple
10% of the time: Keep the word unchanged, e.g., my dog is hairy.

Next Sentence Prediction (NSP): Predicts if the second sentence follows the first, using the hidden
state of the [CLS] token for binary classification (IsNext or NotNext).

Input=[CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP], Label=IsNext

Input=[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP], Label=NotNext

Devlin et al., ”BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.
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BERT: Performance on SQuAD 1.1

34/34


	Sequence-to-Sequence Models
	Attention Mechanism
	Transformer
	Large Language Models: BERT

