
Recurrent Neural Networks

Tianxiang (Adam) Gao

February 22, 2024

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Outline

1 Speech and Language Problems

2 Recurrent Neural Networks (RNNs)

3 Stabilize RNNs Learning

4 Word Embedding

2/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Recap: Learning with CNNs

1× 1 Convolution: Learns high-level patterns by combining multiple basic patterns.
Classic CNNs: Inception with various setups, and MobileNet using depthwise separable
convolution.
Transfer Learning: Fine-tune a large, pretrained model on a smaller dataset using a lower learning
rate to learn task-specific features.
Data Augmentation: Increases dataset diversity and reduces overfitting (e.g., flips, random
cropping, color adjustments, mixups).
Object Detection: Uses 1× 1 convolution to implement fully connected layers (FC). The YOLO
algorithm learns both class distribution and bounding boxes by leveraging object localization.
Semantic Segmentation: Assigns a class label to each pixel. UNet combines lower- and
higher-level features using an encoder-decoder architecture.
Face Recognition: Learns a similarity function explicitly (via triplet loss) or implicitly (via siamese
networks).
Neural Style Transfer: Minimizes content and style loss simultaneously, where style is defined as
the correlation between different channels.

3/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Outline

1 Speech and Language Problems

2 Recurrent Neural Networks (RNNs)

3 Stabilize RNNs Learning

4 Word Embedding

4/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Speech Emotion Recognition

Input: The raw audio waveform
Output: Angry? Multi-class classification

5/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Speaker Identification and Verification

Input: The raw audio waveform
Output: Classification or similarity learning

6/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Speech Recognition

“Good morning, everyone! To-
day, we’ll be discussing sequen-
tial data and sequential models
and their use in tasks like speech
recognition and language pro-
cessing. Feel free to ask ques-
tions during the lecture.”

Input: The raw audio waveform
Output: A sequence of text or words
Model: It is framed as a sequence-to-sequence problem.

7/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Sentiment Analysis

“I recently got a new smartphone, and I’m
thrilled! The camera is amazing, and the
battery lasts all day. I’m a bit disappointed
with the fingerprint sensor, but overall, it’
s a great phone, and I’m happy with my
purchase.”

Input: A sequence of text.
Output: sentiment classification, e.g., tone of the text.

8/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Machine Translation

“I recently got a new smartphone, and I’m
thrilled! The camera is amazing, and the
battery lasts all day. I’m a bit disappointed
with the fingerprint sensor, but overall, it’
s a great phone, and I’m happy with my
purchase.”

“我最近买了一部新智能手机，感到非常兴
奋！相机效果非常棒，电池可以用一整天。
不过，指纹传感器有点让我失望，但总体
来说，这是一部很不错的手机，我对这次
的购买非常满意。”

Input: A sequence of text in the source language
Output: A sequence of equivalent text translated into the target language
Model: seq2seq task and language model

9/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Chatbots

Input: A sequence of text or tokens
Output: A sequence of response text
Prepresentation: Word embeddings

10/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

The Raw Audio Waveform

Define: A 1D signal array represents the amplitude of the sound over time
Sampling Rate: The number of samples per second (e.g., 16 kHz or 44.1 kHz).
Amplitude: The “loudness” of the sound, represented either by integers ranging from -32,768 to
32,767 (for 16-bit audio) or normalized between -1.0 and 1.0 for floating-point.
Example: A 10-second audio waveform sampled at 16kHz would result in a 1D array with
16, 000× 10 = 160, 000 amplitude values, each representing the sound amplitude at a specific
point in time.

11/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

One-Hot Encoding

Define: Each word in a vocabulary is represented by a binary one-hot vector.
Sequence Data:

x(1) ”The dog chases the cat.”
x(2) ”A bird flies over the dog.”
x3 ”The mouse hides from the cat.”
...

...
x(1000) ”The cat watches the fish swim.”

Vocabulary:
Word Word Index One-Hot Encoding

a 1 [1, 0, 0, …, 0]
bird 2 [0, 1, 0, …, 0]
cat 3 [0, 0, 1, …, 0]
...

...
...

zoo 10,000 [0, 0, 0, …, 1]
Special words: start of a sentence (SOS) and end of a sentence (EOS) with extra indices.

12/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Outline

1 Speech and Language Problems

2 Recurrent Neural Networks (RNNs)

3 Stabilize RNNs Learning

4 Word Embedding

13/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Challenges in Text Data

Input Sequence: Each input sequence is represented as

x(i) =
{
x
(i)
1 , . . . ,x

(i)
Ti

}
=

{
x
(i)
t

}Ti

t=1
, ∀i ∈ [N]

where x
(i)
t is the input at time step t of the i-th sequence, Ti is the sequence length, and N is the

total number of sequences.
Training Dataset:

D = {x(i),y(i)}Ni=1

where y(i) is the target sequence corresponding to the input x(i).
Using one-hot encoding, each xt = ei ∈ RV , where V is the size of the vocabulary and i is the
index of word xt in the vocabulary.
We could use an MLP for sequence data by stacking the x(i) into a long vector:[

x
(i)
1 x

(i)
2 · · · x

(i)
T

]⊤
∈ RV T×1

If the MLP has H hidden units, the weight matrix would have the dimension H × V T .
In practice, V can be very large (e.g., V ∼ 10, 000) in large-scale NLP tasks such as machine
translation. This leads to the issue of the curse of dimensionality.
Moreover, MLP treats sequence data as a flattened vector, losing temporal information.

14/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Language Models

Definition: A probabilistic model that assigns probabilities to sequences of words. For example:

P(x1, · · · ,xT) = P(”The cat chases the mouse into a small hole.”)

Using the chain rule, the probability of a sequence of words can be decomposed as:

P(x1,x2, · · · ,xT) =P(xT | x1, · · · ,xT−1) · P(x1, · · · ,xT−1)

=P(xT | x1, · · · ,xT−1) · P(xT−1 | x1, · · · ,xT−2)

· P(x2 | x1) · P(x1)

=P(x1) ·
T∏

i=2

P(xt | x1, · · · ,xt−1)

For a neural language model (NLM), we use a neural network to model the conditional
probability of the next word given the previous words:

P(xt+1 | x1, · · · ,xt) = fθ(x1, · · · ,xt),

where fθ is a parameterized function (e.g., a neural network) that outputs a probability
distribution over the vocabulary for the next word.

15/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Recurrent Neural Networks for Language Models
To model conditional probability:

P (xt+1 | x1, · · · ,xt) = fθ(x1, · · · ,xt).

RNNs encode the history into a compact hidden state ht, i.e.,
(x1, · · · ,xt) 7→ ht.

(ht−1,xt) 7→ ht.

The conditional probability is modeled through the current hidden state:
P (xt+1 | x1, · · · ,xt) = fθ(ht).

Specifically, the RNN unit updates are given by:
ht = tanh(Whht−1 +Wxxt + bh),

ŷt =softmax(Wyht + by)

where ŷt is the probability distribution over the vocabulary.

Key Insights
RNNs capture temporal dependencies by updating the hidden state ht at each time step, sharing the
same weights Wh,Wx,Wy for parameter efficiency and consistent learning across sequences.

16/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Training RNNs
The RNN unit updates are defined as:

ht = tanh(Whht−1 +Wxxt + bh),

ŷt = softmax(Wyht + by).

The training dataset is D = {y(i)}Ni=1, where each y(i) = {y(i)
t }Tt=1 is a sequence of words.

Starting with x1 = y1, the model iteratively uses xt = ŷt−1 to predict ŷt.

The total cost is computed using cross-entropy loss:

L(θ) = − 1

NT

N∑
i=1

T∑
t=1

y
(i)
t · log ŷ(i)

t

Define: Self-supervised learning is a machine learning technique where a model generates its
own labels from unlabeled data.

17/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Backpropogation Through Time

Forward propagation:

ht = ϕ(Whht−1 +Wxxt), ŷt = σ(Wyht).

Backpropogation through time:

dht = W⊤
h

[
ϕ′

t+1 � dht+1

]
+W⊤

y

[
σ′

t � dyt

]
dWh =

∑
t

[
dht � ϕ′

t

]
ht−1, dWx =

∑
t

[
dht � ϕ′

t

]
xt, dWy =

∑
t

[
dŷt � σ′

t

]
h⊤

t

where ϕt := ϕ(Whht−1 +Wxxt) and σt := σ(Wyht).

18/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Generating a New Sequence with NLM
Once the NLM is well trained, we can sample new sequences of text by following these steps:

1 Start with a seed word or token: Choose an initial word as input.
2 Feed the word to the model: The model predicts the next word based on the history:

ht = tanh(Whht−1 +Wxxt), ŷt = softmax(Wyht).

3 Sample the next word: Select the next word from the predicted probability distribution:
Greedy decoding: Pick the word with the highest probability.
Stochastic sampling: Randomly select a word based on the probability distribution.

4 Iterate: Use the sampled word as the input for the next time step, and repeat the process.
5 Termination: Stop when an EOS token is generated or a maximum length is reached.

Example: Given the current sequence “The dog chases the”, the model predicts:
ŷt = {”a” : 0.01, ”bird” : 0.25, ”cat” : 0.45, . . . , ”zoo” : 0.01, }

The model samples “cat”, feeds it back, and continues generating until the sequence ends.
19/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Different Types of RNNs

One-to-Many (Sequence Generation): A single input leads to a sequence of outputs.
Application: Image captioning, music generation.

Many-to-One (Sequence Classification): Processes a sequence of inputs to produce a single output.
Application: Sentiment analysis, speech emotion recognition, Speaker Identification/Verification.

Many-to-Many (Synchronous): Input and output sequences have the same length.
Application: Video classification, named entity recognition.

Many-to-Many (Sequence-to-Sequence): Input and output sequences can have different lengths.
Application: Machine translation, speech recognition.

20/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Summary

Challenges in Text Data: High dimensionality and loss of temporal information.
Neural Language Models (NLMs): Use neural networks to model the conditional probability of
the next word given the previous ones.
RNNs: Encode the history into a compact hidden state ht, which is updated by combining the
previous hidden state ht−1 with the current input xt.
Training RNNs:

Forward (simplified): ht = ϕ(Whht−1 +Wxxt)

Backward (simplified): dht = W⊤
h

(
ϕ′
t+1 ⊙ dht+1

)
+W⊤

y (σ′
t ⊙ dyt)

Generation: Sample the next word from the predicted probability distribution produced by RNNs.
RNN Types: One-to-many, many-to-one, or many-to-many structures for different tasks.

21/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Outline

1 Speech and Language Problems

2 Recurrent Neural Networks (RNNs)

3 Stabilize RNNs Learning

4 Word Embedding

22/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Vanishing or Exploding Gradients in RNNs

Forward (simplified):

ht = ϕ(Whht−1 +Wxxt) ≈Whht−1 +Wxxt ≈W t
hx0 = O(at)

Backward (simplified):

dht = W⊤
h

(
ϕ′

t+1 � dht+1

)
+W⊤

y

(
σ′

t � dyt

)
≈W

⊤(T−t)
h dhT = O(bT−t)

Long-term dependencies:
”The dog chased a cat down the street, ran out of the house, jumped over a fence, and after
running for what seemed like miles, finally caught the ...”

23/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Gated Recurrent Unit (GRU)

Update Gate (zt): Controls how much of the previous hidden state is carried forward:

zt = σ(Wz[ht−1,xt])

where σ(·) is the sigmoid function, outputting values in the range (0, 1).
Final Hidden State (ht): Combines the previous hidden state ht−1 and the candidate state h̃t

based on the update gate zt:

ht = zt � ht−1 + (1− zt)� h̃t

Candidate Hidden State (h̃t): Computed by resetting parts of the previous hidden state:

h̃t = tanh(Wh(rt � ht−1) +Wxxt)

Reset Gate (rt): Determines how much of the previous hidden state should be forgotten:

rt = σ(Wr[ht−1,xt])

Key Insights
The update gate zt helps carry important information from the past for long-term dependencies.
The reset gate rt forces discards irrelevant past information, focusing on the most important data.

Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation”. EMNLP2014.
24/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Long Short-Term Memory (LSTM)
Forget Gate (ft): Decides what information to discard from the previous cell state:

ft = σ(Wf [ht−1,xt])

Input Gate (it): Controls which new information to update in the cell state:
it = σ(Wi[ht−1,xt])

Output Gate (ot): Controls what part of the cell state should be output:
ot = σ(Wo[ht−1,xt])

Candidate Cell State (c̃t): Computes the new candidate values for the cell state:
c̃t = tanh(Wc[ht−1,xt])

Cell State (ct): The cell state is updated based on the forget and input gates:
ct = ft � ct−1 + it � c̃tThe final hidden state is:

ht = ot � tanh(ct)

Key Insights
LSTMs maintain long-term dependencies via the memory cell state ct.
LSTMs are more flexible than GRU by using more gates to control the flow of information.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation.
25/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Bidirectional Recurrent Neural Networks (BRNNs)

Forward: The RNN processes the input sequence from the first time step to the last.
−→
h t = tanh(Wf [

−→
h t−1,xt])

Backward: Another RNN processes the sequence in reverse from the last time step to the first.
←−
h t = tanh(Wb[

←−
h t+1,xt])

Combined Hidden State: The final hidden state is the concatenation of the forward and
backward states:

ht = [
−→
h t,
←−
h t]

Schuster, M., & Paliwal, K. K. (1997). Bidirectional Recurrent Neural Networks. IEEE Transactions on Signal Processing.
26/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Deeper RNNs

Forward propagation: Each layer ℓ computes its hidden state by using the hidden state from the
previous layer ℓ− 1:

h
(ℓ)
t = ϕ(W

(ℓ)
h h

(ℓ)
t−1 +W (ℓ)

x h
(ℓ−1)
t),

where h
(0)
t = xt.

The hidden state from the final layer is used for predictions.

Graves, A. (2013). Speech recognition with deep recurrent neural networks. ICASSP.
27/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Outline

1 Speech and Language Problems

2 Recurrent Neural Networks (RNNs)

3 Stabilize RNNs Learning

4 Word Embedding

28/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Featurized Representation

Drawbacks of One-Hot Representation:
Orthogonality: One-hot vectors are orthogonal, meaning they don’t capture any relationships or
similarities between words.
High Dimensionality: One-hot vectors are sparse and grow with the size of the vocabulary,
making them inefficient for large vocabularies (e.g., millions of words).

Example: Word Correlation Matrix

Category man woman king queen apple orange
Gender -1.00 1.00 -0.95 0.97 0.01 0.02
Royalty 0.01 0.02 1.00 0.9 -0.01 0.08

Age 0.02 0.03 0.71 0.68 0.05 0.05
Food -0.01 0.02 -0.02 0.03 0.81 0.75

Word Embedding:
Word embeddings represent words as dense vectors in a lower-dimensional space.
Words used in similar contexts have higher correlations, capturing their semantic relationships.

29/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Using Word Embeddings
Embedding Matrix:

The embedding matrix E ∈ Rd×V is a learned matrix that transforms a one-hot encoded word x
into a dense word embedding vector e:

e = Ex

where d is the embedding dimension, and V is the size of the vocabulary.
This transformation allows words to be represented as dense vectors in a lower-dimensional
space, capturing semantic relationships.

Transfer Learning:
Word embeddings can be pre-trained on large corpora (e.g., Wikipedia or news articles), allowing
models to capture rich semantic relationships.
In small datasets, rare or specific words may be hard to learn, but pre-trained embeddings group
similar words together. This helps models generalize better, even with limited data.

Analogy:
Word embeddings capture analogies.

man− woman ≈ king− queen

This means that models can understand not only word meanings but also deeper relationships
between words.

Mikolov et al., “Linguistic Regularities in Continuous Space Word Representations”, NAACL 2013.
30/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Learning Word Embeddings with a Language Model

Let {w1, · · · ,wT } be a sequence of words, e.g., ‘‘The cat chased a mouse into a hole in the wall.”
In previous language models, we aim to model the probability of the next word given the history:

P(wt | w1, . . . ,wt−1) = fθ(x1, · · · ,xt−1),

where xt is a one-hot vector representing the word at time step t.

With word embeddings, this becomes:

P(wt | w1, . . . ,wt−1) = fθ(e1, . . . , et−1),

where the word embedding et is computed by

et = Ext,

E ∈ Rd×V is the embedding matrix, with d the
embedding dimension, and V the vocabulary size.
During training, both language model fθ and the
embedding matrix E are learned simultaneously.

Yoshua Bengio et al., “A Neural Probabilistic Language Model”, Journal of Machine Learning Research, 2003.
31/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Word2vec: CBOW and Skip-Gram

Continuous Bag of Words (CBOW): Predicts the target word given the context:

P(wt | wt−n, . . . ,wt+n) = fθ(et−n, . . . , et+n)

where the n-gram sequence {et−n, · · · , et+n} represents context words and et is the target word.
Practically, a shallow network with n = O (1) is sufficient to learn embedding matrix E.

et±i = Ext±i, h = W [et−n, . . . , et+n], ŷ = softmax(h), ∀i ∈ {1, 2, . . . , n},

where the concatenation [et−n, . . . , et+n] can be replaced with summation or averaging to reduce
computational complexity.

Skip-Gram: Predicts the context words given a target word.

P(wt−n, . . . ,wt+n | wt) = fθ(et)

For each context word wt±i, we predict its probability given the embedding of target word et:

et = Ext, hi = Wet, ŷt±i = softmax(hi), ∀i ∈ {1, 2, · · · , n}.

Mikolov et al., “Efficient Estimation of Word Representations in Vector Space”, ICLR 2013.
32/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Negative Sampling

Expensive softmax: The full softmax is computationally expensive because it requires summing
over the entire vocabulary:

softmax(h) = ehj∑V
i=1 e

hi

where V ∼ 1million.
Reformulates the context-target prediction as a binary classification: (wt,wc, y), where y is label.
Binary classifier for context-target pair: P(y = 1 | wc,wt) = σ(e⊤

c et), where σ(·) is sigmoid
Maximize log-likelihood: It is equivalent to minimizing the following objective:

L(E) = −
∑

(ec,et)

logσ(e⊤
t ec)−

∑
(ec,ẽt)

logσ(−e⊤
t ẽc)

where ẽt are negative samples from words outside the context window.

Mikolov et al., “Efficient Estimation of Word Representations in Vector Space”, ICLR 2013.
33/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Word Analogy Task

Objective: Assess the quality of word embeddings by testing how well they capture semantic and
syntactic relationships between words.
Goal: Given an analogy of the form: “a is to b as c is to ???”, find the word d that completes the
analogy correctly.
Examples:

Semantic analogy: “Paris is to France as Washington, D.C. is to the United States.”
Syntactic analogy: “Run is to Running as Swim is to Swimming.”

Vector Arithmetic: ed ≈ eb − ea + ec, i.e., linear space
The word d is chosen as the vector ed closest to eb − ea + ec based on cosine similarity:

d = arg max
x∈V

SC(ex, eb − ea + ec)

where V is the vocabulary, and

SC(u, v) = cos(θ) = u⊤v

‖u‖ · ‖v‖

where θ is the angle between vectors u and v.
Evaluation: The predicted word d is evaluated by comparing it to the correct answer from the
analogy dataset.

34/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

GloVe: Global Vectors for Word Representation

Objective: Create a word embedding model that captures both local context and global
statistical information from a text corpus.
Co-occurrence Matrix:

Xij : Number of times word j appears in the context of word i.
Xi =

∑
j Xij : Total occurrences of any word in the context of word i.

P(wj | wi) = Xij/Xi: Probability of word j occurs in the context of word i.
Word Comparison in Context:

Compare words ei and ej in the context ẽk using a probability ratio:

exp
{
(ei − ej)

⊤ẽk

}
=

P(wi | wk)

P(wj | wk)
=

Xki

Xkj

Taking the log yields:

e⊤i ẽk − e⊤j ẽk = logXki − logXkj ⇒ e⊤i ẽk ∼ logXki

Cost Function:
The GloVe model learns word vectors ei and context vectors ẽk by minimizing:

J =
∑
i,k

f(Xik)
(
e⊤i ẽk + bi + b̃k − log(Xik)

)2

f(Xik) is a weighting function for co-occurrences, while bi and b̃k are bias to maintain symmetry.

Pennington, J., Socher, R., & Manning, C. D. (2014). “GloVe: Global Vectors for Word Representation”, EMNLP 2014
35/36

Speech and Language Problems Recurrent Neural Networks (RNNs) Stabilize RNNs Learning Word Embedding

Bias in Word Embeddings

Problem: Word embeddings trained on large datasets often encode societal biases, like gender
stereotypes:

“Man is to Computer Programmer as Woman is to Homemaker?”

Identifying Bias Direction: Compute the average difference between definitional pairs:
e⃗man − e⃗woman

e⃗he − e⃗she

· · ·
⇒ e⃗bias =

1

N

N∑
i=1

(e⃗xi − e⃗yi)

This average can be replaced by advanced techniques like PCA.
Neutralization: Project non-definitional words onto the space orthogonal to the bias direction to
remove bias:

e⃗← e⃗− e⃗⊤e⃗bias
‖e⃗bias‖2

· e⃗bias

Equalizing Pairs: Adjust equalize pairs (like “brother” and “sister”) to have equal and opposite
projections along the gender direction, making them equidistant from the gender-neutral axis.
Identifying Gendered Words: Train a classifier to distinguish between gender-specific and neutral
words using a set of definitional pairs.

Bolukbasi et al., “Man is to computer programmer as woman is to homemaker? Debiasing word embeddings,” NeurIPS 2016.
36/36

	Speech and Language Problems
	Recurrent Neural Networks (RNNs)
	Stabilize RNNs Learning
	Word Embedding

