Convolutional Neural Networks

Tianxiang (Adam) Gao

Feb 6, 2025

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation
Outline				

2 Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Olassic CNNs: LeNet-5, AlexNet, VGG, ResNet

5 Semantic Segmentation

Convolutional Neural Networks (CNNs)

Stabilize CNNs Training 0000000 Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Recap: Neural Networks and Training

- MLPs are parameterized function f_{θ} , where $\theta = \{ W^{\ell}, b^{\ell} \}$:
 - Forward Propagation (biases omitted): Start with $oldsymbol{x}^0 = oldsymbol{x}$

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}, & orall \ell \in \{0, 1, 2, \dots, L\} \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

• Backward Propagation (biases omitted): Start with $dm{z}^L = (m{x}^L - m{y}) \odot \phi'(m{z}^L)$

$$\begin{split} d\boldsymbol{z}^{\ell} &= \left[(\boldsymbol{W}^{\ell+1})^{\top} d\boldsymbol{z}^{\ell+1} \right] \odot \phi'(\boldsymbol{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\} \\ d\boldsymbol{W}^{\ell} &= d\boldsymbol{z}^{\ell} \boldsymbol{x}^{(\ell-1)\top} \end{split}$$

• The training involves solving an **optimization** problem to iteratively update the heta

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i) := R_S(f_{\boldsymbol{\theta}}),$$

where ℓ is a loss function and $\mathcal{S} := \{ \boldsymbol{x}_i, \boldsymbol{y}_i \}_{i=1}^{\ell}$ is a training set.

• This optimization problem can be solved using **gradient**-based methods such as (*stochastic*) gradient descent (SGD), gradient descent with momentum, RMSProp, Adam, etc:

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \cdot \boldsymbol{v}^+,$$

where $\eta > 0$ is a learning rate and v is a search direction.

・ロト ・回 ト ・ ヨト ・ ヨト - ヨー

Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Recap: Generalization and Regularization

• Model complexity trade-off: The expected risk $R(f_S) = \mathbb{E}_{(x,y)\sim \mathcal{D}}\ell(f_S(x), y)$ is upper bounded:

$$R(f_S) \leq R_S(f_S) + \mathfrak{R}_S(\mathcal{H}) + \tilde{\mathcal{O}}(n^{-1}).$$

• Bias-Variance trade-off: The expectation of $R(f_S)$ over random sample S is decomposed as:

where $\bar{f} := \mathbb{E}_S[f_S]$ and f^* is the optimal hypothesis.

- Regularization: Weight decay, dropout regularization, and stochastic weight averaging
- Hyperparameter tune: Validation set, random search, log scale
- Overparameterization: Double descent, flat minimum, implicit regularization

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation
Outline				

2 Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Olassic CNNs: LeNet-5, AlexNet, VGG, ResNet

5 Semantic Segmentation

Convolutional Neural Networks (CNN 0000000000000000 Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Image Classification

- Input: An image
- **Output**: Cat? Binary classification (0 or 1).

Convolutional Neural Networks (CNNs 0000000000000000 Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Multiple Classification: Softmax

airplane	🔤 🐹 📈 🖌 🖿 🛃 🔐 🔤
automobile	a 🗱 🏹 🏫 🔤 🚟 😂 🖬 🖏 🐝
bird	🔝 🗾 📓 📢 💒 🏹 🦻 🔛 💓
cat	Si 😒 🖄 🔤 🎆 💹 🕵 🖉 🧇 📂
deer	🗱 🔛 😭 💏 🎆 🌠 🎲 🗱
dog	89. 🌾 🤜 🎘 🎘 🧑 📢 🏔 🌋
frog	ST 10 10 10 10 10 10 10 10 10 10 10 10 10
horse	🏜 🕾 🕸 法 🕅 📷 🖾 🎉 🕷
ship	🥽 🥶 🔤 🚢 🚘 💋 🖉 💓
truck	🚄 🎬 💒 🌉 💯 🔤 減 🕍 🕋 🕌

- Input: An image
- Output: Class label $\{0, 1, 2, \cdots, 9\}$.
- **Softmax**: Converts a vector *z* of **logits** into probability distribution across classes

$$\mathsf{Softmax}(\boldsymbol{z}_i) = \frac{e^{\boldsymbol{z}_i}}{\sum_{j=1}^C e^{\boldsymbol{z}_j}},$$

where C is the number of classes.

Convolutional Neural Networks (CNN 0000000000000000 Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Object Detection

- Input: An image
- Outputs:
 - Class label
 - Bounding box: $[x_{\min}, y_{\min}, x_{\max}, y_{\max}]$
 - Confidence scores: A probability or confidence score between 0 and 1.

000000	000	

Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Semantic Segmentation

Input image

Object Detection

Semantic Segmentation

- Input: An image
- Outputs:
 - A pixel-wise classification map
 - Each pixel is assigned a class label
 - The output is the same spatial size as the input image

00000	000	

Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Neural Style Transfer

- Input: Content image, style image
- **Output**: Generated image

Convolutional Neural Networks (CNN 000000000000000 Stabilize CNNs Trainin

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Challenges in Image Data: High Dimensionality

 $1099 \times 733 \times 3 \approx 2.5$ million pixels

- A two-layer neural network with width 1000 leads to 3 billion parameters to train.
- Despite having large datasets, the limited computational cost makes training challenging.

000	0000	000	

Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Translation Invariance in Images

Key Insight

Image features (edges, textures, or objects) can appear **anywhere** in the image, but they retain the same meaning regardless of their position. This is known as **translation invariance**.

Convolutional Neural Networks (CNN 000000000000000 Stabilize CNNs Trainin

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Importance of Spatial Structure in Images

Key Insight

The **spatial structure** and local connectivity of pixels define an image's recognizable features. When the spatial arrangement is disrupted, the image loses its recognizable form.

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation
Outline				

2 Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Olassic CNNs: LeNet-5, AlexNet, VGG, ResNet

5 Semantic Segmentation

Filters and Edge Detection in Image Processing

Filter: Filters are small matrices that are used to **detect** certain patterns, such as edges, textures, or other important features from the input data.

Original Image

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Convolution Ope	eration			

Define: In image processing, the **convolution operation** slides a small **filter** over the input image, performing a **locally linear transformation** (*i.e.*, element-wise multiplication and summing the results) to produce a feature map that detects patterns.

input image 6×6

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
	000000000000000	0000000	00000	0000000
Convolution Ope	eration			

Define: In image processing, the convolution operation slides a small **filter** over the input image, performing a **locally linear transformation** (*i.e.*, element-wise multiplication and summing the results) to produce a feature map that detects patterns.

• If the input image is $n \times n$ and the filter size is $f \times f$, then the output feature map has size $(n - f + 1) \times (n - f + 1)$.

Convolutional Neural Networks (CNN 0000000000000000 Stabilize CNNs Training 0000000 Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Padding

Define: Padding refers to adding extra pixels (usually *zeros*) around the input data to control the size of the output feature map.

0	0	0	0	0	0	0	0
0	3	0	1	2	7	4	0
0	1	5	8	9	3	1	0
0	2	7	2	5	1	3	0
0	0	1	3	1	7	8	0
0	4	2	1	6	2	8	0
0	2	4	5	2	3	9	0
0	0	0	0	0	0	0	0

- **Preserving Spatial Dimensions**: Padding maintains the spatial dimensions in deeper neural networks.
- Capture Edge information: Padding prevents the loss of boundary information during convolution.
- **Controlling Output Size**: Padding helps ensure feature maps retain the required size for subsequent layers.
- The shape of feature map: $(n+2p-f+1) \times (n+2p-f+1)$.

"Valid" and "So	man" Companyation			
Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation

'Valid" and "Same" Convolution

Define: Padding refers to adding extra pixels (usually zeros) around the input data to control the size of the output feature map.

0	0	0	0	0	0	0	0
0	3	0	1	2	7	4	0
0	1	5	8	9	3	1	0
0	2	7	2	5	1	3	0
0	0	1	3	1	$\overline{7}$	8	0
0	4	2	1	6	2	8	0
0	2	4	5	2	3	9	0
0	0	0	0	0	0	0	0

- Valid: No padding, output size is $(n f + 1) \times (n f + 1)$.
- Same: Padding ensures the output has the same shape as the input, with output size $(n+2p-f+1) \times (n+2p-f+1)$.

$$n+2p-f+1=n \implies p=\frac{f-1}{2}$$

Hence, generally, filters have **odd** dimensions, *e.g.*, 3×3 or 5×5 .

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Stride				

Define: Stride in CNNs refers to the number of pixels by which the filter moves across the input during convolution, affecting the output size by skipping certain positions.

- Control Output Size: Larger stride results in a smaller feature map.
- Computational Efficiency: Larger strides require fewer convolution operations.
- Output Feature Map Shape:

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

where $\lfloor x \rfloor$ is the floor function, returning the largest integer less than or equal to x.

Computer Vision Problems	Convolutional Neural Networks (CNNs) 000000000000000	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Simplified Conv	olutional Layer			

- Let $X \in \mathbb{R}^{n imes n}$ be the input image, and $F \in \mathbb{R}^{f imes f}$ be the trainable filter.
- The convolutional layer is defined as:

$$\boldsymbol{Z} = \boldsymbol{X} * \boldsymbol{F} + \boldsymbol{b}, \quad \boldsymbol{A} = \mathsf{ReLU}(\boldsymbol{Z})$$

where:

- $b \in \mathbb{R}$ is the **bias** term added to each element in Z.
- $Z \in \mathbb{R}^{(n-f+1)\times(n-f+1)}$ represents the pre-activation values, assuming no padding and a stride of 1.

Key Observation

While MLPs use explicit weight matrices, CNNs use **filters** that serve the role of weight matrices, learning specific features directly from the data.

00000000	0000000000000	000000	00000	0000000
Neurons in CNI	\lc			

• We can represent the input image X and filter F as vector forms, $x \in \mathbb{R}^{n^2 \times 1}$ and $w \in \mathbb{R}^{f^2 \times 1}$, by stacking their entries:

$$oldsymbol{X} = egin{bmatrix} oldsymbol{x}_1 & \cdots & oldsymbol{x}_n\end{bmatrix} \implies oldsymbol{x} = egin{bmatrix} oldsymbol{x}_1 & \cdots & oldsymbol{f}_f\end{bmatrix} \implies oldsymbol{w} = egin{bmatrix} oldsymbol{f}_1 \ dots \ oldsymbol{f}_{f^2}\end{bmatrix}, ext{ and } oldsymbol{F} = egin{bmatrix} oldsymbol{f}_1 & \cdots & oldsymbol{f}_f\end{bmatrix} \implies oldsymbol{w} = egin{bmatrix} oldsymbol{f}_1 \ dots \ oldsymbol{f}_{f^2}\end{bmatrix}.$$

Thus, each convolution can be viewed as extracting a local receptive field using a projection matrix Π_i ∈ ℝ^{f²×n²} to obtain x̂_i, followed by an inner product with w:

$$\hat{\boldsymbol{x}}_i = \Pi_i \boldsymbol{x}, \qquad \boldsymbol{z}_i = \boldsymbol{w}^\top \hat{\boldsymbol{x}}_i + b, \qquad \boldsymbol{a}_i = \mathsf{ReLU}(\boldsymbol{z}_i), \quad \forall i \in \left\{1, 2, \dots, \left(n - f + 1\right)^2\right\}$$

Key Insights

- **Sharing:** Each neuron in a convolutional layer **shares** the same weights and bias across spatial locations, reducing the impact of high dimensionality.
- Sparsity: Each output depends only on a locally small portion of the input.

Convolutional Neural Networks (CNNs)

Stabilize CNNs Training 0000000 Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Convolution Over Volumes

- The input can have **multiple** channels (e.g., an RGB image), and the filter must have the **same** number of channels to properly apply the convolution operation, which performs a *locally linear transformation*.
- The filter has size $n_H imes n_W imes n_C$

Simple CNN Exa	imple			
Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation

- The output of CNN is flattened into a vector
- The flattened vector serves as the input to a fully connected layer
- In CNN design, feature maps typically shrink in spatial size while channels increase as depth grows.

Feature Map as an Indicator: The output feature map highlights detected patterns, with higher values indicating matched regions.

Original Image

Convolutional Neural Networks (CNNs 00000000000000000 Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Hierarchical Feature Detection

Feature Map as an Indicator: The output feature map highlights detected patterns, with higher values indicating matched regions.

- Early Layers: Detect basic elements like edges and textures, forming the foundation for more complex patterns.
- Middle Layers: Combine edges into shapes (e.g., circles, squares) by recognizing the arrangement of basic features.
- Deeper Layers: Recognize object parts by detecting combinations of shapes and features.
- Final Layers: Detect entire objects by assembling recognized parts, outputting a classification or region of interest.

Summary of Con	volutional Neural Netw	orks		
Computer Vision Problems 000000000	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation

- Challenges: High dimensionality, translation invariance, and spatial structure
- Filters: Small, trainable matrices that detect features in the input data.
- Convolution Operation: A locally linear transformation that creates a feature map, emphasizing regions where the filter matches the pattern.
- Padding and Stride: Methods for controlling feature map size, preserving spatial dimensions, and improving *computational efficiency*.
- **Convolution Over Volumes:** Designed to process multi-channel inputs like RGB images with filters that **match** each channel.
- **Multiple Filters:** A single convolutional layer can use **multiple** filters to detect various features simultaneously.
- Weight Sharing and Sparsity: Neurons in CNNs share weights across locations, with each output relying on a small, localized input region.
- Hierarchical Feature Detection: Early layers capture basic features (like edges), which later layers combine into higher-level features.

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training ●0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Outline				

2 Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Olassic CNNs: LeNet-5, AlexNet, VGG, ResNet

5 Semantic Segmentation

Computer Vision	Problems

Convolutional Neural Networks (CNNs)

Stabilize CNNs Trainir

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000 Semantic Segmentation 0000000

Pooling

Define: The pooling layer in CNNs reduces spatial dimensions of feature maps through downsampling, commonly using max or average pooling operations.

- Pooling helps reduce the computational load
- It also enhances robustness by making the network less sensitive to small spatial variations.
- Common hyperparameters: pool size f and stride s, typically f = s = 2.

Convolutional Neural Networks (CNNs)

Stabilize CNNs Trainin

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Recap: Input Normalization

• Normalize the inputs using training set:

$$\boldsymbol{\mu} = rac{1}{n}\sum_{i=1}^n \boldsymbol{x}_i, \qquad \boldsymbol{\sigma}^2 = rac{1}{n}\sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\mu})^2, \qquad ar{\boldsymbol{x}}_i = (\boldsymbol{x}_i - \boldsymbol{\mu})/\boldsymbol{\sigma},$$

where all operations are taken element-wise.

- Consider a binary classification problem using linear model: $f_{\theta}(x) = \boldsymbol{w}^{\top} \boldsymbol{x} = w_1 x_1 + w_2 x_2$
 - if $x_1 = \mathcal{O}(100)$ and $x_2 = \mathcal{O}(1)$, to have output $f_{\theta} = \mathcal{O}(1)$, we must have $w_1 = \mathcal{O}\left(\frac{1}{100}\right)$ and $w_2 = \mathcal{O}(1)$.
 - After normalization, $\bar{x}_1 = \mathcal{O}(1)$ and $\bar{x}_2 = \mathcal{O}(1)$, so we have $w_1 = \mathcal{O}(1) 1$ and $w_2 = \mathcal{O}(1)$.

• At test time, apply μ and σ from training to test set.

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation
Batch Normaliza	ition			

• Given an input \boldsymbol{x} , the forward propagation in DNNs:

$$\boldsymbol{z}^{\ell} = \boldsymbol{W}^{\ell} \boldsymbol{x}^{\ell-1}, \quad \boldsymbol{a}^{\ell} = \phi(\boldsymbol{z}^{\ell}) \quad \forall \ell \in [L].$$

where $x^0 = x$ is the input image.

- We can apply the same normalization from the input layer to each hidden layer to speed up the training.
- Additionally, as we train DNNs using mini-batch rather than full batch, **internal covariance shift** in *mini-batches*. Hence, the normalization is applied on the mini-batch rather the full batches.

Batch Normalization During Training

Given a mini-batch $\{\boldsymbol{z}^1,\ldots,\boldsymbol{z}^b\}$ for a hidden layer:

• Normalize the pre-activation to mean zero and variance one:

$$oldsymbol{\mu} = rac{1}{b}\sum_{i=1}^b oldsymbol{z}^i, \qquad oldsymbol{\sigma}^2 = rac{1}{b}\sum_{i=1}^b (oldsymbol{z}^i - oldsymbol{\mu})^2, \qquad oldsymbol{z}_{\mathsf{norm}}^i = rac{oldsymbol{z}^i - oldsymbol{\mu}}{\sqrt{oldsymbol{\sigma}^2 + arepsilon}}$$

where $\varepsilon > 0$ ensures numerical stability.

• Re-scale and shift using learnable parameters:

$$\hat{oldsymbol{z}}^i = oldsymbol{\gamma} oldsymbol{z}^i_{\mathsf{norm}} + oldsymbol{eta}$$

where γ and β are **learnable** parameters.

• γ and β enable identity transformation, allowing flexibility:

$$\gamma = \sqrt{\sigma^2 + \varepsilon}, \qquad \beta = \mu$$

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Batch Normaliza	tion at Test Time			

• Training Phase: For each mini-batch, compute batch statistics and update the normalized output:

$$\boldsymbol{\mu}_{\mathsf{batch}} = rac{1}{b} \sum_{i=1}^{b} \boldsymbol{z}^{i}, \quad \boldsymbol{\sigma}_{\mathsf{batch}}^{2} = rac{1}{b} \sum_{i=1}^{b} (\boldsymbol{z}^{i} - \boldsymbol{\mu}_{\mathsf{batch}})^{2}, \quad \boldsymbol{z}_{\mathsf{norm}}^{i} = rac{\boldsymbol{z}^{i} - \boldsymbol{\mu}_{\mathsf{batch}}}{\sqrt{\boldsymbol{\sigma}_{\mathsf{batch}}^{2} + \varepsilon}}, \quad \hat{\boldsymbol{z}}^{i} = \boldsymbol{\gamma} \boldsymbol{z}_{\mathsf{norm}}^{i} + \boldsymbol{\beta}$$

• Running Statistics: After each mini-batch, update the running mean and variance:

$$oldsymbol{\mu}_{\mathsf{run}} = (1-lpha)oldsymbol{\mu}_{\mathsf{run}} + lphaoldsymbol{\mu}_{\mathsf{batch}} \ oldsymbol{\sigma}_{\mathsf{run}}^2 = (1-lpha)oldsymbol{\sigma}_{\mathsf{run}}^2 + lphaoldsymbol{\sigma}_{\mathsf{batch}}^2$$

• Test Phase: Normalize using running statistics and apply scale and shift:

$$oldsymbol{z}_{ ext{test}} \leftarrow rac{oldsymbol{z}_{ ext{test}} - oldsymbol{\mu}_{ ext{run}}}{\sqrt{\sigma_{ ext{run}}^2 + arepsilon}}, \hspace{1em} \hat{oldsymbol{z}}_{ ext{test}} \leftarrow oldsymbol{\gamma} oldsymbol{z}_{ ext{test}} + oldsymbol{eta}$$

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation
Skip Connection	IS			

Define: A skip connection is a shortcut in a DNN that adds the input directly to the output.

• In MLPs, forward propagation without skip connections (omitting biases):

$$oldsymbol{x}^\ell = \phi(oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}) pprox oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} pprox oldsymbol{W}^\ell \cdots oldsymbol{W}^1 oldsymbol{x}^0 = \mathcal{O}\left(a^\ell
ight)$$

This results in an **exponential growth or decay** of information.

• With skip connections, the propagation becomes:

$$\boldsymbol{x}^{\ell} = \phi(\boldsymbol{W}^{\ell}\boldsymbol{x}^{\ell-1}) + \boldsymbol{x}^{\ell-1} = \sum_{i=0}^{\ell} \boldsymbol{W}^{i}\phi(\boldsymbol{x}^{i}) = \mathcal{O}\left(\boldsymbol{\ell}\right)$$

Here, linear growth of information is achieved, stabilizing the learning process.

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet •0000	Semantic Segmentation
Outline				

2 Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Olassic CNNs: LeNet-5, AlexNet, VGG, ResNet

5 Semantic Segmentation

omputer Vision Problems 00000000	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 0●000	Semantic Segmentation
eNet-5				

- It has totally 5 weight layers: 2 Convolutional layers and 3 fully connected (FC) layers
- $\bullet\,$ Sigmoid and $\tanh\,$ activations
- Average pooling
- $\bullet\,$ Number of parameters: ~ 60 thousands.
- MNIST dataset: ~ 60 thousands.

Convolutional Neural Networks (CNNs

Stabilize CNNs Traini 0000000 Classic CNNs: LeNet-5, AlexNet, VGG, ResNe

Semantic Segmentation

AlexNet

- 5 convolutional and 3 FC.
- ReLU activation and max pooling layers.
- Dropout regularization in FC layers.

- $\bullet\,$ Number of parameters: \sim 63 million.
- ImageNet dataset: \sim 1.2 million images.

onvolutional Neural Networks (CNN:

Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 000000 Semantic Segmentation

VGG-16

- 13 convolutional and 3 FC.
- Unified convolution and max-pooling setup: f = 3, s = 1, and "same"; f = 2 and s = 2
- $\bullet ~ \sim 138$ million parameters trained on ImageNet

Simonyan, K., & Zisserman, A. "Very deep convolutional networks for large-scale image recognition." ICLR 2015 - E - 🕤 🔍

Computer Vision Probler	ns Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, Alex
ResNet-34			
sidual			

- Batch normalization and skip connections applied to pre-activation.
- $\bullet \sim 11.7$ million parameters trained on ImageNet.

34-layer re-

34-layer plain

64, /2

x7 com

He, Kaiming, et al. "Deep residual learning for image recognition." CVPR 2016.

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Outline				

2 Convolutional Neural Networks (CNNs)

Stabilize CNNs Training

Olassic CNNs: LeNet-5, AlexNet, VGG, ResNet

5 Semantic Segmentation

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

Semantic Segmentation with U-Net

Successful Applications:

Chest X-Ray

Brain MRI

Novikov, et al. "Fully convolutional architectures for multiclass segmentation in chest radiographs." IEEE Tran Med Img 2018 Dong, et al. "Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks.", MIUA2012

Semantic Labeli	ng		
Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Per-Pixel Class Labeling:

• Assign a class label to every pixel in the image.

• Output is an image of the same dimensions as the input.

0000000

Gao, et al. "SFSM: sensitive feature selection module for image semantic segmentation." Multimed. Tools Appl. 2023 🕨 💈 🔊 🤇

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet 00000	Semantic Segmentation
Transpose Conv	olution			

Transpose Convolution: A transpose convolution (or a **deconvolution** or **up-sampling convolution**) is an operation that applies a filter to input data in a way that expands its spatial dimensions.

Computer Vision Problems	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentation
Deconvolution				

Deconvolution: A deconvolution (or a **transpose convolution** or **up-sampling convolution**) is an operation that applies a filter to input data in a way that expands its spatial dimensions.

$$\underbrace{\begin{bmatrix} 3 & 0 \\ 1 & 5 \end{bmatrix}}_{\text{input } 2 \times 2} * \underbrace{\begin{bmatrix} 2 & 7 & 4 \\ 3 & 1 & 7 \\ 4 & 2 & 1 \end{bmatrix}}_{\text{filter } 3 \times 3} = \underbrace{\begin{bmatrix} 6 & 21 & 12 & 0 \\ 11 & 20 & 60 & 20 \\ 15 & 23 & 24 & 35 \\ 4 & 12 & 11 & 5 \end{bmatrix}}_{\text{feature map } 4 \times 4}$$

- $\bullet\,$ The stride can be more than 1
- Padding is reversed by discarding boundary pixels.
- For overlaps, use averaging or summation.
- The filter represents patterns, with the input indicating where these patterns are detected.
- In unmax pooling, either duplicate pixels in the output or place the maximum value pixel while setting others to zero.

t Architecture					
ter Vision Problems 00000	Convolutional Neural Networks (CNNs)	Stabilize CNNs Training 0000000	Classic CNNs: LeNet-5, AlexNet, VGG, ResNet	Semantic Segmentat 00000000	

U-Net Architecture

• With skip connection, U-Net combines (or concatenates) high-level abstract features (from deeper layers) and spatial details (from earlier layers).

Convolutional Neural Networks (CNNs 000000000000000 Stabilize CNNs Training

Classic CNNs: LeNet-5, AlexNet, VGG, ResNet

Semantic Segmentation

U-Net Output

Gao, et al. "SFSM: sensitive feature selection module for image semantic segmentation." Multimed. Tools Appl. 2023 + 💈 🗠 🔍 🔍