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Recap: Neural Networks and Training
MLPs are parameterized function fθ, where θ = {W ℓ, bℓ}:

• Forward Propagation (biases omitted): Start with x0 = x

zℓ = W ℓxℓ−1, ∀ℓ ∈ {0, 1, 2, . . . , L}

xℓ = ϕ(zℓ),

• Backward Propagation (biases omitted): Start with dzL = (xL − y)⊙ ϕ′(zL)

dzℓ =
[
(W ℓ+1)⊤dzℓ+1

]
⊙ ϕ′(zℓ), ∀ℓ ∈ {1, 2, . . . , L− 1}

dW ℓ = dzℓx(ℓ−1)⊤

The training involves solving an optimization problem to iteratively update the θ

min
θ

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi),yi) := RS(fθ),

where ℓ is a loss function and S := {xi,yi}ℓi=1 is a training set.
This optimization problem can be solved using gradient-based methods such as (stochastic)
gradient descent (SGD), gradient descent with momentum, RMSProp, Adam, etc:

θ+ = θ − η · v+,

where η > 0 is a learning rate and v is a search direction.
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Recap: Generalization and Regularization

Model complexity trade-off: The expected risk R(fS) = E(x,y)∼Dℓ(fS(x),y) is upper bounded:

R(fS) ≤ RS(fS) +RS(H) + Õ(n−1).

Bias-Variance trade-off: The expectation of R(fS) over random sample S is decomposed as:

ES [R(fS)] =ES(fS − f̄)2︸ ︷︷ ︸
Variance term

+ED(f̄ − f∗)2︸ ︷︷ ︸
Bias term

+ R(f∗)︸ ︷︷ ︸
irreducible

where f̄ := ES [fS ] and f∗ is the optimal hypothesis.
Regularization: Weight decay, dropout regularization, and stochastic weight averaging
Hyperparameter tune: Validation set, random search, log scale
Overparameterization: Double descent, flat minimum, implicit regularization

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime
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Image Classification

Input: An image
Output: Cat? Binary classification (0 or 1).
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Multiple Classification: Softmax

Input: An image
Output: Class label {0, 1, 2, · · · , 9}.
Softmax: Converts a vector z of logits into
probability distribution across classes

Softmax(zi) =
ezi∑C
j=1 e

zj
,

where C is the number of classes.
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Object Detection

Input: An image
Outputs:

Class label
Bounding box: [xmin, ymin, xmax, ymax]
Confidence scores: A probability or confidence
score between 0 and 1.
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Semantic Segmentation

Input: An image
Outputs:

A pixel-wise classification map
Each pixel is assigned a class label
The output is the same spatial size as the input image
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Neural Style Transfer

Input: Content image, style image
Output: Generated image
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Challenges in Image Data: High Dimensionality

28× 28× 1 = 784

1099× 733× 3 ≈ 2.5 million pixels

A two-layer neural network with width 1000 leads to 3 billion parameters to train.
Despite having large datasets, the limited computational cost makes training challenging.

11/47



Computer Vision Problems Convolutional Neural Networks (CNNs) Stabilize CNNs Training Classic CNNs: LeNet-5, AlexNet, VGG, ResNet Semantic Segmentation

Translation Invariance in Images

Key Insight
Image features (edges, textures, or objects) can appear anywhere in the image, but they retain the
same meaning regardless of their position. This is known as translation invariance.
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Importance of Spatial Structure in Images

Key Insight
The spatial structure and local connectivity of pixels define an image’s recognizable features. When
the spatial arrangement is disrupted, the image loses its recognizable form.
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Filters and Edge Detection in Image Processing

Filter: Filters are small matrices that are used to detect certain patterns, such as edges, textures, or
other important features from the input data.

Original Image

1 0 −1
1 0 −1
1 0 −1


︸ ︷︷ ︸

Vertical Filter

−1 −1 −1
0 0 0
1 1 1


︸ ︷︷ ︸

Horizontal Filter
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Convolution Operation

Define: In image processing, the convolution operation slides a small filter over the input image,
performing a locally linear transformation (i.e., element-wise multiplication and summing the results)
to produce a feature map that detects patterns.


3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9


︸ ︷︷ ︸

input image 6 × 6

∗

1 0 −1
1 0 −1
1 0 −1


︸ ︷︷ ︸

filter 3 × 3

=




︸ ︷︷ ︸
feature map 4 × 4
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Convolution Operation

Define: In image processing, the convolution operation slides a small filter over the input image,
performing a locally linear transformation (i.e., element-wise multiplication and summing the results)
to produce a feature map that detects patterns.


3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9


︸ ︷︷ ︸

input image 6 × 6

∗

1 0 −1
1 0 −1
1 0 −1


︸ ︷︷ ︸

filter 3 × 3

=


−5 −4 0 8
10 −2 2 3
0 −2 −4 −7
−3 −2 −3 −16


︸ ︷︷ ︸

feature map 4 × 4

If the input image is n× n and the filter size is f × f , then the output feature map has size
(n− f + 1)× (n− f + 1).
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Padding

Define: Padding refers to adding extra pixels (usually zeros) around the input data to control the size
of the output feature map. 

0 0 0 0 0 0 0 0
0 3 0 1 2 7 4 0
0 1 5 8 9 3 1 0
0 2 7 2 5 1 3 0
0 0 1 3 1 7 8 0
0 4 2 1 6 2 8 0
0 2 4 5 2 3 9 0
0 0 0 0 0 0 0 0


Preserving Spatial Dimensions: Padding maintains the spatial dimensions in deeper neural
networks.
Capture Edge information: Padding prevents the loss of boundary information during
convolution.
Controlling Output Size: Padding helps ensure feature maps retain the required size for
subsequent layers.
The shape of feature map: (n+ 2p− f + 1)× (n+ 2p− f + 1).
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“Valid” and “Same” Convolution

Define: Padding refers to adding extra pixels (usually zeros) around the input data to control the size
of the output feature map. 

0 0 0 0 0 0 0 0
0 3 0 1 2 7 4 0
0 1 5 8 9 3 1 0
0 2 7 2 5 1 3 0
0 0 1 3 1 7 8 0
0 4 2 1 6 2 8 0
0 2 4 5 2 3 9 0
0 0 0 0 0 0 0 0


Valid: No padding, output size is (n− f + 1)× (n− f + 1).
Same: Padding ensures the output has the same shape as the input, with output size
(n+ 2p− f + 1)× (n+ 2p− f + 1).

n+ 2p− f + 1 = n =⇒ p =
f − 1

2

Hence, generally, filters have odd dimensions, e.g., 3× 3 or 5× 5.
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Stride

Define: Stride in CNNs refers to the number of pixels by which the filter moves across the input
during convolution, affecting the output size by skipping certain positions.

3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9


︸ ︷︷ ︸

input image 6 × 6

∗

1 0 −1
1 0 −1
1 0 −1


︸ ︷︷ ︸

filter 3 × 3

=

[
−5 0
0 −4

]
︸ ︷︷ ︸

feature map 2 × 2 with stride 2

Control Output Size: Larger stride results in a smaller feature map.
Computational Efficiency: Larger strides require fewer convolution operations.
Output Feature Map Shape:⌊

n+ 2p− f

s
+ 1

⌋
×

⌊
n+ 2p− f

s
+ 1

⌋
,

where ⌊x⌋ is the floor function, returning the largest integer less than or equal to x.
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Simplified Convolutional Layer

Let X ∈ Rn×n be the input image, and F ∈ Rf×f be the trainable filter.
The convolutional layer is defined as:

Z = X ∗ F + b, A = ReLU(Z)

where:
b ∈ R is the bias term added to each element in Z.
Z ∈ R(n−f+1)×(n−f+1) represents the pre-activation values, assuming no padding and a stride of 1.

3 0 1 2 7 4
1 5 8 9 3 1
2 7 2 5 1 3
0 1 3 1 7 8
4 2 1 6 2 8
2 4 5 2 3 9


︸ ︷︷ ︸

X

∗

1 0 −1
1 0 −1
1 0 −1


︸ ︷︷ ︸

F

=


−5 −4 0 8
10 −2 2 3
0 −2 −4 −7
−3 −2 −3 −16


︸ ︷︷ ︸

Z

Key Observation
While MLPs use explicit weight matrices, CNNs use filters that serve the role of weight matrices,
learning specific features directly from the data.
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Neurons in CNNs

We can represent the input image X and filter F as vector forms, x ∈ Rn2×1 and w ∈ Rf2×1, by
stacking their entries:

X =
[
x1 · · · xn

]
=⇒ x =

 x1

...
xn2

 , and F =
[
f1 · · · ff

]
=⇒ w =

 f1

...
ff2

 .

Thus, each convolution can be viewed as extracting a local receptive field using a projection
matrix Πi ∈ Rf2×n2 to obtain x̂i, followed by an inner product with w:

x̂i = Πix, zi = w⊤x̂i + b, ai = ReLU(zi), ∀i ∈
{
1, 2, . . . , (n− f + 1)2

}
Key Insights

Sharing: Each neuron in a convolutional layer shares the same weights and bias across spatial
locations, reducing the impact of high dimensionality.
Sparsity: Each output depends only on a locally small portion of the input.
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Convolution Over Volumes

The input can have multiple channels (e.g., an RGB image), and the filter must have the same
number of channels to properly apply the convolution operation, which performs a locally linear
transformation.
The filter has size nH × nW × nC

Andrew Ng, “Convolutional Neural Networks”. Coursera.
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Convolution with Multiple Filters

Multiple filters can be used in a convolution layer to detect multiple features.

https://indoml.com/
24/47
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Simple CNN Example

The output of CNN is flattened into a vector
The flattened vector serves as the input to a fully connected layer
In CNN design, feature maps typically shrink in spatial size while channels increase as depth grows.

https://indoml.com/
25/47

https://indoml.com/


Computer Vision Problems Convolutional Neural Networks (CNNs) Stabilize CNNs Training Classic CNNs: LeNet-5, AlexNet, VGG, ResNet Semantic Segmentation

Feature Map as an Indicator

Feature Map as an Indicator: The output feature map highlights detected patterns, with higher
values indicating matched regions.

Original Image

1 0 −1
1 0 −1
1 0 −1


︸ ︷︷ ︸

Vertical Filter−1 −1 −1
0 0 0
1 1 1


︸ ︷︷ ︸

Horizontal Filter
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Hierarchical Feature Detection

Feature Map as an Indicator: The output feature map highlights detected patterns, with higher
values indicating matched regions.

Early Layers: Detect basic elements like edges and textures, forming the foundation for more
complex patterns.
Middle Layers: Combine edges into shapes (e.g., circles, squares) by recognizing the arrangement
of basic features.
Deeper Layers: Recognize object parts by detecting combinations of shapes and features.
Final Layers: Detect entire objects by assembling recognized parts, outputting a classification or
region of interest.

Lee, et al. “Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations.” ICML 2009.
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Summary of Convolutional Neural Networks

Challenges: High dimensionality, translation invariance, and spatial structure
Filters: Small, trainable matrices that detect features in the input data.
Convolution Operation: A locally linear transformation that creates a feature map,
emphasizing regions where the filter matches the pattern.
Padding and Stride: Methods for controlling feature map size, preserving spatial dimensions, and
improving computational efficiency.
Convolution Over Volumes: Designed to process multi-channel inputs like RGB images with
filters that match each channel.
Multiple Filters: A single convolutional layer can use multiple filters to detect various features
simultaneously.
Weight Sharing and Sparsity: Neurons in CNNs share weights across locations, with each
output relying on a small, localized input region.
Hierarchical Feature Detection: Early layers capture basic features (like edges), which later
layers combine into higher-level features.
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Pooling

Define: The pooling layer in CNNs reduces spatial dimensions of feature maps through downsampling,
commonly using max or average pooling operations.

Pooling helps reduce the computational load
It also enhances robustness by making the network less sensitive to small spatial variations.
Common hyperparameters: pool size f and stride s, typically f = s = 2.
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Recap: Input Normalization

Normalize the inputs using training set:

µ =
1

n

n∑
i=1

xi, σ2 =
1

n

n∑
i=1

(xi − µ)2, x̄i = (xi − µ)/σ,

where all operations are taken element-wise.
Consider a binary classification problem using linear model: fθ(x) = w⊤x = w1x1 + w2x2

if x1 = O (100) and x2 = O (1), to have output fθ = O (1), we must have w1 = O
(

1
100

)
and

w2 = O (1).
After normalization, x̄1 = O (1) and x̄2 = O (1), so we have w1 = O (1) 1 and w2 = O (1).

At test time, apply µ and σ from training to test set.
31/47
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Batch Normalization

Given an input x, the forward propagation in DNNs:

zℓ = W ℓxℓ−1, aℓ = ϕ(zℓ) ∀ℓ ∈ [L].

where x0 = x is the input image.
We can apply the same normalization from the input layer to each hidden layer to speed up the
training.
Additionally, as we train DNNs using mini-batch rather than full batch, internal covariance shift
in mini-batches. Hence, the normalization is applied on the mini-batch rather the full batches.

Carnegie Mellon University (CMU): 11-785 Introduction to Deep Learning.
32/47
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Batch Normalization During Training
Given a mini-batch {z1, . . . , zb} for a hidden layer:

Normalize the pre-activation to mean zero and variance one:

µ =
1

b

b∑
i=1

zi, σ2 =
1

b

b∑
i=1

(zi − µ)2, zi
norm =

zi − µ√
σ2 + ε

where ε > 0 ensures numerical stability.
Re-scale and shift using learnable parameters:

ẑi = γzi
norm + β

where γ and β are learnable parameters.

γ and β enable identity transformation, allowing flexibility:

γ =
√

σ2 + ε, β = µ
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Batch Normalization at Test Time

Training Phase: For each mini-batch, compute batch statistics and update the normalized output:

µbatch =
1

b

b∑
i=1

zi, σ2
batch =

1

b

b∑
i=1

(zi − µbatch)
2, zi

norm =
zi − µbatch√
σ2

batch + ε
, ẑi = γzi

norm + β

Running Statistics: After each mini-batch, update the running mean and variance:

µrun = (1− α)µrun + αµbatch

σ2
run = (1− α)σ2

run + ασ2
batch

Test Phase: Normalize using running statistics and apply scale and shift:

ztest ←
ztest − µrun√

σ2run + ε
, ẑtest ← γztest + β
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Skip Connections

Define: A skip connection is a shortcut in a DNN that adds the input directly to the output.

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

In MLPs, forward propagation without skip connections (omitting biases):

xℓ = ϕ(W ℓxℓ−1) ≈W ℓxℓ−1 ≈W ℓ · · ·W 1x0 = O
(
aℓ
)

This results in an exponential growth or decay of information.
With skip connections, the propagation becomes:

xℓ = ϕ(W ℓxℓ−1) + xℓ−1 =

ℓ∑
i=0

W iϕ(xi) = O (ℓ)

Here, linear growth of information is achieved, stabilizing the learning process.
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LeNet-5

It has totally 5 weight layers: 2 Convolutional layers and 3 fully connected (FC) layers
Sigmoid and tanh activations
Average pooling
Number of parameters: ∼ 60 thousands.
MNIST dataset: ∼ 60 thousands.

LeCun, Y., et al. (1998). “Gradient-based learning applied to document recognition.” Proc. of the IEEE
37/47
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AlexNet

5 convolutional and 3 FC.
ReLU activation and max pooling layers.
Dropout regularization in FC layers.

Number of parameters: ∼ 63 million.
ImageNet dataset: ∼ 1.2 million images.

Krizhevsky, Alex, et al. “Imagenet classification with deep convolutional neural networks.” NeurIPS 2012.
38/47
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VGG-16

13 convolutional and 3 FC.
Unified convolution and max-pooling setup: f = 3, s = 1, and “same“; f = 2 and s = 2

∼ 138 million parameters trained on ImageNet

Simonyan, K., & Zisserman, A. “Very deep convolutional networks for large-scale image recognition.” ICLR 2015.
39/47
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ResNet-34

Batch normalization and skip connections applied to pre-activation.
∼ 11.7 million parameters trained on ImageNet.

He, Kaiming, et al. “Deep residual learning for image recognition.” CVPR 2016.
40/47
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Semantic Segmentation with U-Net

Successful Applications:

Chest X-Ray
Brain MRI

Novikov, et al. “Fully convolutional architectures for multiclass segmentation in chest radiographs.” IEEE Tran Med Img 2018
Dong, et al. “Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks.”, MIUA2017
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Semantic Labeling

Per-Pixel Class Labeling:

Assign a class label to every pixel in the image.
Output is an image of the same dimensions as the input.

Gao, et al. “SFSM: sensitive feature selection module for image semantic segmentation.” Multimed. Tools Appl. 2023
43/47
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Transpose Convolution

Transpose Convolution: A transpose convolution (or a deconvolution or up-sampling convolution)
is an operation that applies a filter to input data in a way that expands its spatial dimensions.

[
3 0
1 5

]
︸ ︷︷ ︸

input 2 × 2

∗

2 7 4
3 1 7
4 2 1


︸ ︷︷ ︸

filter 3 × 3

=




︸ ︷︷ ︸
feature map 4 × 4
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Deconvolution

Deconvolution: A deconvolution (or a transpose convolution or up-sampling convolution) is an
operation that applies a filter to input data in a way that expands its spatial dimensions.

[
3 0
1 5

]
︸ ︷︷ ︸

input 2 × 2

∗

2 7 4
3 1 7
4 2 1


︸ ︷︷ ︸

filter 3 × 3

=


6 21 12 0
11 20 60 20
15 23 24 35
4 12 11 5


︸ ︷︷ ︸

feature map 4 × 4

The stride can be more than 1

Padding is reversed by discarding boundary pixels.
For overlaps, use averaging or summation.
The filter represents patterns, with the input indicating where these patterns are detected.
In unmax pooling, either duplicate pixels in the output or place the maximum value pixel while
setting others to zero.
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U-Net Architecture
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With skip connection, U-Net combines (or concatenates) high-level abstract features (from
deeper layers) and spatial details (from earlier layers).

Ronneberger, et al. “U-net: Convolutional networks for biomedical image segmentation.” MICCAI 2015
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U-Net Output

Gao, et al. “SFSM: sensitive feature selection module for image semantic segmentation.” Multimed. Tools Appl. 2023
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