Generalizaiton and Regularizaiton

Tianxiang (Adam) Gao

Jan 30, 2025

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overparameterization 0000

Outline

Statistical Learning Theory

2 Regularization

Hyperparameter Tune

Recap: Optimization in Neural Networks

Training Process:

- MLP are parameterized function f_{θ} , where $\theta = \{ W^{\ell}, b^{\ell} \}$
- The training process involves solving an optimization problem with respect to θ :

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

where ℓ is a loss function and $\mathcal{S} := \{ \pmb{x}_i, \pmb{y}_i \}_{i=1}^{\ell}$ is a training set.

• One commonly used method is called gradient descent:

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \nabla \mathcal{L}(\boldsymbol{\theta})$$

where $\eta > 0$ is a **learning rate**.

Convergence Issues:

- Small η leads to slow convergence but large η cause oscillations or divergence.
- DNN loss landscapes are highly complex, exhibiting large and varying condition numbers κ
- Ill-conditioned loss landscapes cause zig-zag patterns in gradient descent.
- Unstable information propagation in DNNs can result in vanishing or exploding gradients.

イロト イヨト イヨト イヨト ヨー わへの

Recap: Advanced Optimizers

Improving Optimizations:

- Averaging gradients (or with momentum) helps smooth the descent direction.
- A larger η is used in GD with momentum, but training also exhibits **damping** effects in the loss.
- Adaptive methods like RMSProp rescale gradients to maintain consistent update magnitudes.
- Adaptive optimizers provide an adaptive learning rate for each gradient coordinate.
- SGD with mini-batch improves computational efficiency by using small data subsets.

Questions

- What are common activation functions beyond sigmoid and ReLU?
- How should I choose learning rate, width, and depth for my network?
- Does gradient descent always converge? How can I speed up training?
- Does good training performance guarantee good test performance?

Outline

Statistical Learning Theory

2 Regularization

Hyperparameter Tune

Overparameterization

Statistical Learning Theory	Regularization 000000000000	Hyperparameter Tune 00000000	Overparameterization
Gaussian Mixture Model			

- Assume the output y follows a discrete uniform distribution over $\{0,1\}$, meaning $y \sim \mathcal{U}\{0,1\}$.
- For each value of y, the input x follows a *Gaussian distribution*:
 - When y = 0, x follows $x|y = 0 \sim \mathcal{N}(\mu_1, \sigma_1^2)$, e.g., $\mu_1 = 1$ and $\sigma_1 = 1$
 - When y=1, x follows $x|y=1 \sim \mathcal{N}(\mu_2, \sigma_2^2)$, e.g., $\mu_2=2$ and $\sigma_2=2$

- This setup defines a (binary) Gaussian Mixture Model (GMM).
- Both x and y are random variables, with a joint distribution denoted as \mathcal{D} , i.e., $(x, y) \sim \mathcal{D}$.

Statistical Learning Theory (SLT)

- Assume the data (x,y) is drawn from an underlying joint distribution \mathcal{D} , i.e., $(x,y) \sim \mathcal{D}$.
- The goal of learning is to find a (parameterized) function f such that:

$f(x)\approx y$

for "most" (x, y) pairs in a probabilistic sense.

• The expected risk of f is defined as:

$$R(f) := \mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x) - y]^2,$$

where we use the squared loss to measure the difference between f(x) and y.

- In practice, the distribution \mathcal{D} is **unknown**.
- Instead, we collect a random training sample $S := \{(x_i, y_i)\}_{i=1}^n$ and compute the empirical risk or training error:

$$R_S(f) := \frac{1}{n} \sum_{i=1}^n [f(x_i) - y_i]^2$$

• By the law of large numbers, we have:

$$R_S(f) \longrightarrow R(f)$$
 as $n \to \infty$.

Example of Expected and Empirical Risk using GMM

Suppose (x, y) follows GMM, and the function $f(x) = \theta x$, *i.e.*, parameterized linear function.

 $\bullet\,$ The expected risk R(f) is given by

$$\begin{split} R(f) = & \mathbb{E}_{(x,y)\sim\mathcal{D}}\ell(f(x),y) \\ = & \int \left[f(x) - y\right]^2 p(x,y) dx dy = \int \left[f(x) - y\right]^2 p(x|y) p(y) dx dy \\ = & \frac{1}{2} \int \left[f(x)\right]^2 p(x|y=0) dx + \frac{1}{2} \int \left[f(x) - 1\right]^2 p(x|y=1) dx \\ = & \frac{1}{2} \int \left[\theta x\right]^2 \cdot \mathcal{N}(x;\mu_1,\sigma_1^2) dx + \frac{1}{2} \int \left[\theta x - 1\right]^2 \cdot \mathcal{N}(x;\mu_2,\sigma_1^2) dx \\ & \triangleq R(\theta), \end{split}$$

where p(x,y) is the joint density, and $\mathcal{N}(x;\mu,\sigma^2)$ is the Gaussian density defined by

$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

• The empirical risk $R_S(f)$ over a training sample is given by

$$R_S(f) = \frac{1}{n} \sum_{i=1}^n [\theta x_i - y_i]^2 \triangleq R_S(\theta).$$

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
0000000000000000	0000000000000	0000000	0000
Hypothesis Class			

In practice, we cannot evaluate all possible functions f. Instead, we restrict our search to a family of functions called a **hypothesis class** \mathcal{H} . Each function $h \in \mathcal{H}$ is called a **hypothesis**.

• The collection of all linear models or the collection of all two-layer neural networks:

$$\mathcal{H}_1 = \{h : h(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}\}$$
$$\mathcal{H}_2 = \{h : h(\mathbf{x}) = \mathbf{v}^\top \phi(\mathbf{W}\mathbf{x})\}$$

• A learning algorithm aims to find the best hypothesis $h \in \mathcal{H}$ that minimizes the **expected risk**:

$$f_{\mathcal{H}} := \operatorname*{argmin}_{f \in \mathcal{H}} R(f).$$

- The difference $||f^* f_H||$ is called the **approximation error**, where f^* is the ground true function.
- The Universal Approximation Theorem (UAT) implies $||f^* f_{\mathcal{H}}|| \approx 0$ if $\mathcal{H} = \mathcal{H}_2$.

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
	0000000000000	00000000	0000
Decomposition of Expected F	Risk		

• Given a learned hypothesis f_S from a sample S, the expected risk of f_S can be decomposed as:

• The generalization error is the difference between the expected risk and the empirical risk.

• In practice, the generalization error is estimated using the test error on an independent test set.

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
	0000000000000	00000000	0000
Bounding the Generalization	Error		

• The generalization error can be upper bounded by the complexity of the hypothesis class:

 $\sup_{h\in\mathcal{H}}|R(h)-R_S(h)|\leq \text{Complexity Term},$

where the "Complexity Term" quantifies how flexible or complex the hypothesis class ${\cal H}$ is.

• One commonly used complexity measure is the (empirical) Rademacher complexity:

$$\mathfrak{R}_{S}(\mathcal{H}) := \mathbb{E}_{\sigma_{i} \sim \mathcal{U}\{-1,1\}} \left[\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_{i}), \sigma_{i}) \right],$$

where $\ell(h(x), \sigma) = \sigma h(x)$ and $\sigma_i \in \{-1, 1\}$ are i.i.d. Rademacher random variables (uniformly distributed), *i.e.*, $\sigma \sim \mathcal{U}\{-1, 1\}$, and the expectation is taken over these random labels.

- Rademacher complexity measures the ability of the hypothesis class to fit **random noise** (i.e., how well the hypothesis class can fit random labels).
- Using model complexity, we can derive the following generalization bound:

$$R(f_S) \le R_S(f_S) + \Re_S(\mathcal{H}) + \tilde{\mathcal{O}}(n^{-1}),$$

where the expected risk is upper bounded by the training error and the complexity of the model.

Example: Complexity of Linear Models

Let $S \subseteq \{ \boldsymbol{x} : \| \boldsymbol{x} \| \leq R \}$ be a random sample, and consider $\mathcal{H}_1 := \{ h : h(\boldsymbol{x}) = \boldsymbol{w}^\top \boldsymbol{x}, \| \boldsymbol{w} \| \leq \Lambda \}.$

• The (empirical) Rademacher complexity $\mathfrak{R}_{\mathrm{S}}(\mathcal{H}_1)$ is given by

$$\begin{aligned} \mathfrak{R}_{S}(\mathcal{H}_{1}) = & \mathbb{E}_{\sigma_{i}} \left[\min_{h \in \mathcal{H}_{1}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_{i}), \sigma_{i}) \right] = \mathbb{E}_{\sigma_{i}} \left[\min_{\|\boldsymbol{w}\| \leq \lambda} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i} \right] \\ \leq & \frac{\Lambda}{n} \mathbb{E}_{\sigma_{i}} \left[\left\| \sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right\| \right] \leq \frac{\Lambda}{n} \left[\mathbb{E}_{\sigma_{i}} \left\| \sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right\|^{2} \right]^{1/2} \\ \leq & \frac{\Lambda}{n} \sqrt{nR^{2}} = \sqrt{\frac{R^{2}\Lambda^{2}}{n}}, \end{aligned}$$

where we use the Cauchy-Schwartz and Jensen's inequalities.

• As a result, the generalization error for linear models satisfies (with high probability):

$$R(h_S) \le R_S(h_S) + \sqrt{\frac{R^2 \Lambda^2}{n}} + \tilde{\mathcal{O}}(n^{-1}).$$

• More data improves the empirical risk R_S as an **approximation** of the expected risk R, reducing overfitting, but overall performance still depends on minimizing R_S .

Hyperparameter Tune 00000000

Model Complexity Trade-Off

The expected risk $R(f_S)$ is upper bounded by the training error and the model complexity:

 $R(f_S) \le R_S(f_S) + \mathfrak{R}_S(\mathcal{H}) + \tilde{\mathcal{O}}(n^{-1}).$

Key Insights on Generalization Bound

- If the model is too simple, it may fail to fit the training data well. This is known as **underfitting**.
- Conversely, if the model is highly flexible, it may achieve low training error, but perform poorly on unseen data. This is known as **overfitting**.
- The goal is to find a "sweet spot" balancing underfitting and overfitting to minimize the overall expected risk.

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
	0000000000000	00000000	0000
Optimal Hypothesis f^*			

Claim: $f^*(x) = \mathbb{E}[y|x]$ is the **optimal hypothesis** that minimizes the expected risk.

Proof.

For any function f, we can decompose the expected risk as follows:

$$R(f) = \mathbb{E}(f - y)^2 = \mathbb{E}(f - f^* + f^* - y)^2$$

= $\mathbb{E}(f - f^*)^2 + 2\mathbb{E}(f - f^*)(f^* - y) + \mathbb{E}(f^* - y)^2$
= $\mathbb{E}(f - f^*)^2 + \mathbb{E}(f^* - y)^2$
 $\geq \mathbb{E}(f^* - y)^2$
= $R(f^*)$

where the cross term $\mathbb{E}(f - f^*)(f^* - y) = 0$, because $f^*(x) = \mathbb{E}[y|x]$.

- This is another existence result.
- The optimal hypothesis f^* is not directly accessible unless we know the joint distribution \mathcal{D} .
- Generally, we may have $R(f^*) \neq 0$. For example, consider $y = \theta x + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

$$f^*(x) = \mathbb{E}[y|x] = \mathbb{E}[\theta x + \varepsilon | x] = \theta x$$

$$R(f^*) = \mathbb{E}_x[f^*(x) - y]^2 = \mathbb{E}_x[\theta x - (\theta x + \varepsilon)]^2 = \sigma^2 \implies \text{ irreducible error.}$$

0000000000000000	0000000000000	0000000	0000
	Regularization	Hyperparameter Tupe	Overnarameterization

- Bias-Variance Decomposition of Expected Risk
 - The learned function f_S depends on the random sample S, making f_S a random variable.
 - Hence, the expected risk $R(f_S)$ is also random, and it varies across different random samples S.
 - To capture this variability, we consider the expectation of the $R(f_S)$ over all possible samples S, i.e., $\mathbb{E}_S[R(f_S)]$.
 - Let $\overline{f} := \mathbb{E}_S[f_S]$, the expected or average hypothesis over all random samples S.
 - Using \bar{f} , we can decompose $\mathbb{E}_S[R(f_S)]$ as follows:

$$\begin{split} \mathbb{E}_{S}[R(f_{S})] = & \mathbb{E}_{S} \mathbb{E}_{(x,y)\sim\mathcal{D}}[f_{S}(x) - y]^{2} \\ = & \mathbb{E}_{S} \mathbb{E}_{\mathcal{D}}[f_{S} - f^{*})]^{2} + R(f^{*}) \\ = & \mathbb{E}_{S} \mathbb{E}_{\mathcal{D}}[f_{S} - \bar{f} + \bar{f} - f^{*}]^{2} + R(f^{*}) \\ = & \mathbb{E}_{S} \mathbb{E}_{\mathcal{D}}\Big[(f_{S} - \bar{f})^{2} + (\bar{f} - f^{*})^{2}\Big] + R(f^{*}) \\ = & \underbrace{\mathbb{E}_{S}(f_{S} - \bar{f})^{2}}_{\text{Variance term}} + \underbrace{\mathbb{E}_{\mathcal{D}}(\bar{f} - f^{*})^{2}}_{\text{Bias term}} + \underbrace{R(f^{*})}_{\text{irreducible}} \end{split}$$

where the cross term $\mathbb{E}_{S,\mathcal{D}}(f_S - \mathbb{E}_S[f_S])(\mathbb{E}_S(f_S) - f^*) = 0$ cancels out.

Hyperparameter Tune 00000000

Bias-Variance Trade-Off

The expected risk $\mathbb{E}_S[R(f_S)]$ can be broken down into three parts:

- Squared Bias: $\mathbb{E}_{\mathcal{D}}[(f^* \mathbb{E}_S(f_S))^2]$ measures the error from approximating the optimal function f^* with the learned model f_S . It reflects the error caused by using a simple model that cannot capture all the data patterns.
- Variance: $Var(f_S) = \mathbb{E}_S[(f_S \mathbb{E}_S(f_S))^2]$ measures how much the learned function f_S varies with different training samples. It represents the error due to the model's sensitivity to fluctuations in the random training sample S.
- Irreducible Error: $R(f^*)$ represents the inherent noise in the data, which no model can eliminate. It is the error we cannot reduce.

- **High bias, low variance**: Simple models (e.g., linear models) have *low variance* since they are less sensitive to training data, but have *high bias* because they are too simple to capture all patterns in the data.
- Low bias, high variance: Complex models (e.g., polynomial model) have *low bias* as they can model complex relations, but *high variance* due to overfitting to the training data.

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
00000000000000		00000000	0000
Summary of Statistica	l Learning Theory		

• The goal is to find a hypothesis f within a hypothesis class \mathcal{H} that minimizes the **expected risk**:

$$R(f) = \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\left(f(x) - y\right)^2\right].$$

• Since the underlying distribution \mathcal{D} is **unknown**, we approximate f by minimizing the **empirical** risk based on a random training sample S:

$$R_S(f) = \frac{1}{n} \sum_{i=1}^n (f(x_i) - y_i)^2.$$

• Using model complexity $\mathfrak{R}_{\mathrm{S}}(\mathcal{H})$, the expected risk is upper bound as:

$$R(f_S) \le R_S(f_S) + \mathfrak{R}_S(\mathcal{H}) + \tilde{\mathcal{O}}(n^{-1}),$$

- By considering variations across different random training samples S, the expected risk $\mathbb{E}_S[R(f_S)]$ can be decomposed into three components: bias, variance, and irreducible error:
 - High bias, low variance: Simple models underfit and miss important patterns in the data.
 - Low bias, high variance: Complex models overfit and perform poorly on unseen data.
- Find the "sweet spot" between underfitting and overfitting to minimize the overall expected risk.

Hyperparameter Tune 00000000 Overparameterization 0000

Outline

Statistical Learning Theory

2 Regularization

Hyperparameter Tune

Overparameterization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DNNs Can Fit Random Labels and Random Data

Key Observation

- Label corruption: Replace true label with random label
- **Shuffled pixels**: The pixels of each image are rearranged using a *fixed* random permutation
- **Random pixels**: Each image has a *unique* random arrangement of pixels).
- Gaussian: The pixels in images are replaced with random Gaussian *noise*.
- Average loss: *Training error* using the cross-entropy loss

DNNs can perfectly fit random labels or data, achieving **zero training error** even on completely unstructured inputs.

Zhang et al. "Understanding deep learning requires rethinking generalization" ICLR 2017.

Hyperparameter Tune 00000000 Overparameterization 0000

Weight Decay

<ロト < 部ト < 言ト < 言ト 差 の Q (~ 20/43

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
000000000000000		00000000	0000
Weight Decay			

• Regularization typically involves adding an extra term, called the regularizer, to the training loss:

$$\mathcal{L}_{\lambda}(oldsymbol{ heta}) := \mathcal{L}(oldsymbol{ heta}) + rac{\lambda}{2} \|oldsymbol{ heta}\|^2,$$

where $\lambda > 0$ is the **regularization hyperparameter**, and $\|\cdot\|$ is the Euclidean norm.

• In deep learning, this regularization is known as weight decay because gradient descent on the regularized loss automatically shrinks (or decays) parameter θ by the factor $(1 - \eta\lambda)$:

$$\begin{split} \boldsymbol{\theta}^{+} = & \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\lambda}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta \left[\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \boldsymbol{\theta} \right] \\ = \underbrace{(1 - \eta \lambda)}_{\text{decaving weights}} \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}). \end{split}$$

• However, θ does **not** shrink to zero, as it must maintain a certain value to minimize the cost $\mathcal{L}(\theta)$.

Statistical Learning Theory 000000000000000	Regularization	Hyperparameter Tune 00000000	Overparameterization
Interpretation: Sparsity			

• The regularized optimization can be reformulated as:

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}), \quad \text{s.t.} \quad \|\boldsymbol{\theta}\| \leq C_{\lambda},$$

where $C_{\lambda} > 0$ is a constant that depends on λ .

- In deep learning, θ is called **sparse** if most parameters are zero or close to zero (i.e., $\theta_i \approx 0$).
- Sparse θ reduces the flexibility and complexity of the DNN, leading to a simpler model.

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
000000000000000		00000000	0000
Interpretation: Linearity			

Consider a simple two-layer neural network:

$$f_{\boldsymbol{\theta}}(x) = \sum_{i=1}^{n} v_i \phi(w_i x),$$

where $x \in \mathbb{R}$ is a scalar and $\phi(\cdot)$ is tanh.

۲

• When $w_i \approx 0$, then $w_i x \approx 0$, and the network operates near the linear region of tanh:

$$v_i\phi(w_ix)\approx v_i(w_ix)\approx (v_iw_i)x=u_ix \quad \Longrightarrow \quad \text{a linear model},$$
 where $u_i:=v_iw_i.$ If $v_i\approx 0,$ then

 $v_i\phi(w_ix)\approx 0,$

indicating fewer neurons are used.

Interpretation: Stability			
Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
00000000000000	0000000000000	0000000	0000

A learning algorithm is stable if small changes to its input do not result in large changes to its output.

• Consider the same two-layer neural network:

$$f_{\boldsymbol{\theta}}(x) = \sum_{i=1}^{n} v_i \phi(w_i x).$$

• The derivative of f_{θ} with respect to the **input** x is:

$$\nabla_x f_{\theta}(x) = \sum_{i=1}^n v_i \phi'(w_i x) w_i.$$

- If either v_i or w_i is small, then $\nabla_x f_{\theta}(x)$ is small.
- Hence, DNNs with sparse parameters are generally more stable than those with dense parameters.

Hyperparameter Tune 00000000 Overparameterization 0000

Dropout

↓ □ ▶ ↓ ⑦ ▶ ↓ 差 ▶ ↓ 差 → ○ へ () 25/43

Statistical Learning Theory 00000000000000	Regularization 00000000000000	Hyperparameter Tune 0000000	Overparameterization 0000
Dropout Regularization			
Recall the forward prop	pagation:		

$$\boldsymbol{z}^{\ell} = \boldsymbol{W}^{\ell} \boldsymbol{x}^{\ell-1}, \quad \boldsymbol{x}^{\ell} = \phi(\boldsymbol{z}^{\ell}).$$

• During training, each neuron is randomly dropped with probability p (a hyperparameter):

$$oldsymbol{z}^\ell = oldsymbol{W}^\ell \left(oldsymbol{r}^\ell \odot oldsymbol{x}^{\ell-1}
ight), \quad oldsymbol{x}^\ell = \phi(oldsymbol{z}^\ell),$$

where $r_i^{\ell} \stackrel{\textit{i.i.d.}}{\sim}$ Bernoulli(p) and \odot is element-wise product.

- The gradient update applies only to a thinned subbnet of the network.
- At test time, dropout is turned off, and weights are scaled by p to respect the dropout probability:

$$\boldsymbol{z}^{\ell} = p \boldsymbol{W}^{\ell} \boldsymbol{x}^{\ell-1}.$$

Internetations Insult	it Encouchie Looming		
Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization

- By randomly dropping units, a different thinned subnet is trained at each gradient descent step.
- With n neurons in the full network, we are effectively training 2^n different subnets simultaneously that all share the same weights.
- At test time, the output is an ensemble prediction, aggregating the contributions of all subnets.

Key Insight

Dropout ensures that **no** single neuron or small group of neurons can dominate the prediction. By **spreading** the responsibility across all units, it improves model robustness to the input change and prevents overfitting.

Hyperparameter Tune 00000000

Overparameterization 0000

Stochastic Weight Averaging

Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
00000000000000		0000000	0000
Trajectories of SGD			

- SGD oscillates around the periphery of high-performing solutions, and averaging SGD iterates improves test performance.
- SGD trajectories resemble a high-dimensional Gaussian-like distribution, with most of the mass concentrated in a **thin shell**.

		0000000	0000
Averaging Weights for	Better Pertormance		

• Averaging SGD iterates leads to improved generalization:

$$ar{m{w}} = rac{1}{k}\sum_{i=1}^km{w}^i$$

• Averaging weights approximates ensembling predictions via linearization (if the weights are close):

$$\frac{1}{k}\sum_{i=1}^{k}f(\boldsymbol{w}^{i})\approx f\left(\frac{1}{k}\sum_{i=1}^{k}\boldsymbol{w}^{i}\right)=f(\bar{\boldsymbol{w}})$$

• Moving average formulation:

$$\begin{split} \boldsymbol{w}^{k+1} &= \boldsymbol{w}^k - \eta \nabla \mathcal{L}(\boldsymbol{w}^k) \\ \boldsymbol{w}^{k+1}_{\text{swa}} &= (1 - \beta^k) \boldsymbol{w}^k_{\text{swa}} + \beta^k \boldsymbol{w}^{k+1} \end{split}$$

where $\beta^k = \frac{k}{k+1}$ or $\beta^k = \beta \in (0,1).$

- DNNs can fit random labels and data, achieving zero training error.
- Weight decay controls large weights, promoting sparsity, linearity, and stability.
- During training, dropout randomly drops units, effectively training an **exponential number** of **thinned subnets** simultaneously.
- At test time, the output is an ensemble prediction, aggregating contributions from all subnets.
- SGD oscillates near the **boundary** of local minima, while SWA finds a **centralized** solution in a flatter region.
- SWA approximates ensemble predictions through linearization.

Outline

Statistical Learning Theory

2 Regularization

Hyperparameter Tune

Overparameterization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recap: Hyperparameters in	Neural Networks		
Statistical Learning Theory	Regularization	Hyperparameter Tune	Overparameterization
000000000000000	0000000000000		0000

The training process involves several key hyperparameters:

- Loss Function $\ell(\cdot, \cdot)$: Square loss, cross-entropy loss, hinge loss
- Activation Function $\phi(\cdot)$: Step, sigmoid, ReLU, tanh, GELU
- Optimizer: SGD, Momentum, RMSProp, Adam, AdamW
- Learning Rate (η) , Batch Size (b), Epochs
- Network Type: MLPs, CNNs, RNNs, Transformers, GNNs
- Width and Depth
- Layers: Normalization, pooling, dropout, softmax
- Otherwise: Initialization (Xavier, He), ℓ_2 -regularization, gradient clipping, early stop

Key Difference: Hyperparameters vs. Trainable Parameters

- Hyperparameters are not trainable. Unlike weights and biases, they need to be tuned.
- Proper tuning is essential for faster convergence during training and achieving good generalization performance.

Validation Set

- Split the dataset into three parts: training set, validation set, and test set.
- Build the model using the training set.
- Optimize or tune hyperparameters on the validation set.
- After tuning, evaluate the final model on the test set.
- Suggested split ratios:
 - For datasets between 100 and 1,000,000 samples: 60/20/20.
 - For datasets larger than 1,000,000 samples: 98/1/1.
- Ensure the validation and test sets come from the same distribution.
 - Example: Training and validation images from the web, but test images from user cell phones can cause a mismatch.

Tuning Process

- Grid Search: Systematically explores a predefined set of hyperparameters; comprehensive but expensive
- Random Search: Randomly sample hyperparameters; more efficient than grid search when some hyperparameters are less important.
- Hyperband/Successive Halving: Dynamically allocate resources and discard poor configurations early, ideal for deep networks with long training times.
- Start with coarse tuning, then refine gradually.
- \bullet Use \log scale for hyperparameter search when appropriate, e.g., learning rate η and smoothing factors β
- Leverage parallelization to run multiple experiments simultaneously to accelerate the search.

Hyperparameter Tune

Input Normalization

• Normalize the inputs using training set:

$$oldsymbol{\mu} = rac{1}{n}\sum_{i=1}^noldsymbol{x}_i, \quad oldsymbol{ar{x}}_i = oldsymbol{x}_i - oldsymbol{\mu}, \quad oldsymbol{\sigma}^2 = rac{1}{n}\sum_{i=1}^noldsymbol{ar{x}}_i^2, \quad oldsymbol{\hat{x}}_i = oldsymbol{ar{x}}_i/oldsymbol{\sigma},$$

where all operations are taken element-wise.

- Consider a binary classification problem using linear model: $f_{\theta}(x) = w_1 x_1 + w_2 x_2$
 - if $x_1 = \mathcal{O}(100)$ and $x_2 = \mathcal{O}(1)$, to have output $f_{\theta} = \mathcal{O}(1)$, we must have $w_1 = \mathcal{O}\left(\frac{1}{100}\right)$ and $w_2 = \mathcal{O}(1)$.
 - After normalization, $\bar{x}_1 = \mathcal{O}(1)$ and $\bar{x}_2 = \mathcal{O}(1)$, so we have $w_1 = \mathcal{O}(1)$ and $w_2 = \mathcal{O}(1)$.

• At test time, apply μ and σ from training to test set.

・ロト ・日下・ モア・ モア

Learning Rate Decay

- \bullet Recall that an ${\bf epoch}\;k$ is one pass through all ${\bf mini-batches}$ in SGD
- Instead of using a fixed learning rate, one can consider using learning rate decay

$$\eta_k = \frac{\eta}{k}, \qquad \eta_k = \frac{\eta}{\sqrt{k}}, \qquad \eta_k = (0.95)^k \eta$$

Bag of Tips

Learning Rate η :

- Log-scale search: $10^{-5} \sim 10^{-1}$.
- Learning rate schedules: Linearly warm up, then decay periodically for smooth convergence.
- Early stopping: Monitor loss curves to detect divergence.

Batch Size b:

- Small batches (e.g., $16 \sim 128$) generalize better, but noisy gradient.
- Large batches (e.g., $256 \sim 4096$) converge faster but may require higher learning rates.
- Rule of Thumb: Use the largest batch size that fits in memory, then tune; $\eta' = \eta \times \frac{b'}{b}$.

Weight Decay:

- Log-scale search: $10^{-5} \sim 10^{-3}$.
- For Adam: Use AdamW instead of standard weight decay.

$$oldsymbol{w} \leftarrow oldsymbol{w} - \eta rac{oldsymbol{v}}{\sqrt{oldsymbol{s}+oldsymbol{arepsilon}}} - \eta \lambda oldsymbol{w} \quad \Longrightarrow \quad oldsymbol{w} \leftarrow oldsymbol{w} - \eta rac{oldsymbol{v}}{\sqrt{oldsymbol{s}+oldsymbol{arepsilon}}} - \lambda oldsymbol{w}$$

where weight decay is scaled by the small η in Adam, reducing the regularization effect.

• If validation loss diverges while training loss improves, increase weight decay.

Dropout:

- Start with $0.2 \sim 0.5$ for input layers, $0.5 \sim 0.8$ for hidden layers.
- \bullet Combine dropout with $\ell_2\text{-}\mathsf{regularization}$ but avoid using it with Batch normalization.

Optimizers:

- SGD+Momentum: More stable than vanilla SGD.
- Adam works well for most tasks with default values $\beta_1=0.9$ and $\beta_2=0.999$
- Use AdamW for better weight decay handling.
- **RMSProp**: Useful for RNNs and reinforcement learning.

Network Architecture (Depth and Width):

- Start simple and gradually increase the complexity
- More layers (depth) improve feature extraction, using skip connections if too deep
- More neurons (width) increase capacity and stabilize training

Activation Functions:

- ReLU: Standard choice for DNNs.
- Leaky ReLU: Fixes dying ReLU problem ($\alpha = 0.01$).
- GELU: Used in Transformers.
- Swish: Works well in CNNs.

Outline

Statistical Learning Theory

2 Regularization

Hyperparameter Tune

< □ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ Q (~ 40/43

Hyperparameter Tune 00000000 Overparameterization 0000

Overparameterization

- A deep neural network (DNN) is said to be **overparameterized** when the number of neurons or parameters is much larger than the number of training samples.
- This might seem counterintuitive, but it has been found to be surprisingly beneficial in practice.

Behnam, et al. "Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks," ICLR 2019 🚽 🔿 🖉

Hyperparameter Tune 00000000

Double Descent

Overparameterized neural networks can perfectly fit or interpolate the training data.

ullet Mathematically, there exists a set of parameters ${m heta}$ such that

$$f_{\theta}(x_i) = y_i, \quad \forall i \in [n].$$
(1)

- Overparameterization implies there are infinitely many interpolation solutions.
- Some interpolation solutions generalize much better than those in the *underparameterized* regime. This phenomenon is called **double descent**.

Hyperparameter Tune 00000000

Implicit Regularization

- It is important to understand that different global minima lead to varying test performances.
- A flat minimum typically results in better generalization than a sharp minimum.
- Different optimizers may converge to different minima, each with different generalization outcomes. This is known as **implicit regularization**.
- Thus, even if your current optimizer achieves low training error, tuning or adjusting it may still be necessary to achieve better test performance.

