
Generalizaiton and Regularizaiton

Tianxiang (Adam) Gao

Jan 30, 2025

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

1 Statistical Learning Theory

2 Regularization

3 Hyperparameter Tune

4 Overparameterization

2/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Recap: Optimization in Neural Networks

Training Process:
MLP are parameterized function fθ, where θ = {W ℓ, bℓ}
The training process involves solving an optimization problem with respect to θ:

min
θ

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi),yi)

where ℓ is a loss function and S := {xi,yi}ℓi=1 is a training set.
One commonly used method is called gradient descent:

θ+ = θ − η∇L(θ)

where η > 0 is a learning rate.

Convergence Issues:
Small η leads to slow convergence but large η cause oscillations or divergence.
DNN loss landscapes are highly complex, exhibiting large and varying condition numbers κ

Ill-conditioned loss landscapes cause zig-zag patterns in gradient descent.
Unstable information propagation in DNNs can result in vanishing or exploding gradients.

3/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Recap: Advanced Optimizers

Improving Optimizations:
Averaging gradients (or with momentum) helps smooth the descent direction.
A larger η is used in GD with momentum, but training also exhibits damping effects in the loss.
Adaptive methods like RMSProp rescale gradients to maintain consistent update magnitudes.
Adaptive optimizers provide an adaptive learning rate for each gradient coordinate.
SGD with mini-batch improves computational efficiency by using small data subsets.

Questions
What are common activation functions beyond sigmoid and ReLU?
How should I choose learning rate, width, and depth for my network?
Does gradient descent always converge? How can I speed up training?
Does good training performance guarantee good test performance?

4/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

1 Statistical Learning Theory

2 Regularization

3 Hyperparameter Tune

4 Overparameterization

5/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Gaussian Mixture Model

Assume the output y follows a discrete uniform distribution over {0, 1}, meaning y ∼ U{0, 1}.
For each value of y, the input x follows a Gaussian distribution:

When y = 0, x follows x|y = 0 ∼ N (µ1, σ2
1), e.g., µ1 = 1 and σ1 = 1

When y = 1, x follows x|y = 1 ∼ N (µ2, σ2
2), e.g., µ2 = 2 and σ2 = 2

This setup defines a (binary) Gaussian Mixture Model (GMM).
Both x and y are random variables, with a joint distribution denoted as D, i.e., (x, y) ∼ D.

6/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Statistical Learning Theory (SLT)

Assume the data (x, y) is drawn from an underlying joint distribution D, i.e., (x, y) ∼ D.
The goal of learning is to find a (parameterized) function f such that:

f(x) ≈ y

for ”most” (x, y) pairs in a probabilistic sense.
The expected risk of f is defined as:

R(f) := E(x,y)∼D[f(x)− y]2,

where we use the squared loss to measure the difference between f(x) and y.
In practice, the distribution D is unknown.
Instead, we collect a random training sample S := {(xi, yi)}ni=1 and compute the empirical risk
or training error:

RS(f) :=
1

n

n∑
i=1

[f(xi)− yi]
2.

By the law of large numbers, we have:

RS(f) −→ R(f) as n→∞.

7/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Example of Expected and Empirical Risk using GMM
Suppose (x, y) follows GMM, and the function f(x) = θx, i.e., parameterized linear function.

The expected risk R(f) is given by

R(f) =E(x,y)∼Dℓ(f(x), y)

=

∫
[f(x)− y]2 p(x, y)dxdy =

∫
[f(x)− y]2 p(x|y)p(y)dxdy

=
1

2

∫
[f(x)]2 p(x|y = 0)dx+

1

2

∫
[f(x)− 1]2 p(x|y = 1)dx

=
1

2

∫
[θx]2 · N (x;µ1, σ

2
1)dx+

1

2

∫
[θx− 1]2 · N (x;µ2, σ

2
1)dx

≜R(θ),

where p(x, y) is the joint density, and N (x;µ, σ2) is the Gaussian density defined by

N (x;µ, σ2) =
1

σ
√
2π

e−(x−µ)2/2σ2

.

The empirical risk RS(f) over a training sample is given by

RS(f) =
1

n

n∑
i=1

[θxi − yi]
2 ≜ RS(θ).

8/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Hypothesis Class
In practice, we cannot evaluate all possible functions f . Instead, we restrict our search to a family of
functions called a hypothesis class H. Each function h ∈ H is called a hypothesis.

The collection of all linear models or the collection of all two-layer neural networks:

H1 ={h : h(x) = w⊤x}

H2 ={h : h(x) = v⊤ϕ(Wx)}.

A learning algorithm aims to find the best hypothesis h ∈ H that minimizes the expected risk:

fH := argmin
f∈H

R(f).

The difference ∥f∗ − fH∥ is called the approximation error, where f∗ is the ground true function.
The Universal Approximation Theorem (UAT) implies ∥f∗ − fH∥ ≈ 0 if H = H2.

9/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Decomposition of Expected Risk

Given a learned hypothesis fS from a sample S, the expected risk of fS can be decomposed as:

R(fS) = RS(fS)︸ ︷︷ ︸
Training Error

+ [R(fS)−RS(fS)]︸ ︷︷ ︸
Generalization Error

.

The generalization error is the difference between the expected risk and the empirical risk.

In practice, the generalization error is estimated using the test error on an independent test set.

10/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Bounding the Generalization Error

The generalization error can be upper bounded by the complexity of the hypothesis class:

sup
h∈H
|R(h)−RS(h)| ≤ Complexity Term,

where the “Complexity Term” quantifies how flexible or complex the hypothesis class H is.
One commonly used complexity measure is the (empirical) Rademacher complexity:

RS(H) := Eσi∼U{−1,1}

[
min
h∈H

1

n

n∑
i=1

ℓ(h(xi), σi)

]
,

where ℓ(h(x), σ) = σh(x) and σi ∈ {−1, 1} are i.i.d. Rademacher random variables (uniformly
distributed), i.e., σ ∼ U{−1, 1}, and the expectation is taken over these random labels.
Rademacher complexity measures the ability of the hypothesis class to fit random noise (i.e., how
well the hypothesis class can fit random labels).
Using model complexity, we can derive the following generalization bound:

R(fS) ≤ RS(fS) +RS(H) + Õ(n−1),

where the expected risk is upper bounded by the training error and the complexity of the model.

11/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Example: Complexity of Linear Models

Let S ⊆ {x : ∥x∥ ≤ R} be a random sample, and consider H1 := {h : h(x) = w⊤x, ∥w∥ ≤ Λ}.
The (empirical) Rademacher complexity RS(H1) is given by

RS(H1) =Eσi

[
min
h∈H1

1

n

n∑
i=1

ℓ(h(xi), σi)

]
= Eσi

[
min

∥w∥≤λ

1

n

n∑
i=1

σiw
⊤xi

]

≤Λ

n
Eσi

[∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
]
≤ Λ

n

[
Eσi

∥∥∥∥∥
n∑

i=1

σixi

∥∥∥∥∥
2]1/2

≤Λ

n

√
nR2 =

√
R2Λ2

n
,

where we use the Cauchy-Schwartz and Jensen’s inequalities.
As a result, the generalization error for linear models satisfies (with high probability):

R(hS) ≤ RS(hS) +

√
R2Λ2

n
+ Õ(n−1).

More data improves the empirical risk RS as an approximation of the expected risk R, reducing
overfitting, but overall performance still depends on minimizing RS .

12/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Model Complexity Trade-Off

The expected risk R(fS) is upper bounded by the training error and the model complexity:

R(fS) ≤ RS(fS) +RS(H) + Õ(n−1).

R
is
k

Training risk

Test risk

Capacity of H
sweet spot

under-fitting over-fitting Key Insights on Generalization Bound
If the model is too simple, it may fail to fit the training
data well. This is known as underfitting.
Conversely, if the model is highly flexible, it may achieve
low training error, but perform poorly on unseen data.
This is known as overfitting.
The goal is to find a “sweet spot” balancing underfitting
and overfitting to minimize the overall expected risk.

13/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Optimal Hypothesis f∗

Claim: f∗(x) = E[y|x] is the optimal hypothesis that minimizes the expected risk.

Proof.
For any function f , we can decompose the expected risk as follows:

R(f) =E(f − y)2 = E(f − f∗ + f∗ − y)2

=E(f − f∗)2 + 2E(f − f∗)(f∗ − y) + E(f∗ − y)2

=E(f − f∗)2 + E(f∗ − y)2

≥E(f∗ − y)2

=R(f∗)

where the cross term E(f − f∗)(f∗ − y) = 0, because f∗(x) = E[y|x].

This is another existence result.
The optimal hypothesis f∗ is not directly accessible unless we know the joint distribution D.
Generally, we may have R(f∗) ̸= 0. For example, consider y = θx+ ε, where ε ∼ N (0, σ2)

f∗(x) =E[y|x] = E[θx+ ε|x] = θx

R(f∗) =Ex[f
∗(x)− y]2 = Ex[θx− (θx+ ε)]2 = σ2 =⇒ irreducible error.

14/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Bias-Variance Decomposition of Expected Risk

The learned function fS depends on the random sample S, making fS a random variable.
Hence, the expected risk R(fS) is also random, and it varies across different random samples S.
To capture this variability, we consider the expectation of the R(fS) over all possible samples S,
i.e., ES [R(fS)].
Let f̄ := ES [fS], the expected or average hypothesis over all random samples S.
Using f̄ , we can decompose ES [R(fS)] as follows:

ES [R(fS)] =ESE(x,y)∼D[fS(x)− y]2

=ESED[fS − f∗)]2 +R(f∗)

=ESED
[
fS − f̄ + f̄ − f∗]2 +R(f∗)

=ESED

[
(fS − f̄)2 + (f̄ − f∗)2

]
+R(f∗)

=ES(fS − f̄)2︸ ︷︷ ︸
Variance term

+ED(f̄ − f∗)2︸ ︷︷ ︸
Bias term

+ R(f∗)︸ ︷︷ ︸
irreducible

where the cross term ES,D(fS − ES [fS])(ES(fS)− f∗) = 0 cancels out.

15/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Bias-Variance Trade-Off
The expected risk ES [R(fS)] can be broken down into three parts:

Squared Bias: ED[(f∗ − ES(fS))
2] measures the error from approximating the optimal function

f∗ with the learned model fS . It reflects the error caused by using a simple model that cannot
capture all the data patterns.
Variance: Var(fS) = ES [(fS − ES(fS))

2] measures how much the learned function fS varies with
different training samples. It represents the error due to the model’s sensitivity to fluctuations in
the random training sample S.
Irreducible Error: R(f∗) represents the inherent noise in the data, which no model can eliminate.
It is the error we cannot reduce.

High bias, low variance: Simple models (e.g., linear
models) have low variance since they are less sensitive to
training data, but have high bias because they are too
simple to capture all patterns in the data.
Low bias, high variance: Complex models (e.g.,
polynomial model) have low bias as they can model
complex relations, but high variance due to overfitting to
the training data.

16/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Summary of Statistical Learning Theory

The goal is to find a hypothesis f within a hypothesis class H that minimizes the expected risk:

R(f) = E(x,y)∼D
[
(f(x)− y)2

]
.

Since the underlying distribution D is unknown, we approximate f by minimizing the empirical
risk based on a random training sample S:

RS(f) =
1

n

n∑
i=1

(f(xi)− yi)
2.

Using model complexity RS(H), the expected risk is upper bound as:

R(fS) ≤ RS(fS) +RS(H) + Õ(n−1),

By considering variations across different random training samples S, the expected risk ES [R(fS)]
can be decomposed into three components: bias, variance, and irreducible error:

High bias, low variance: Simple models underfit and miss important patterns in the data.
Low bias, high variance: Complex models overfit and perform poorly on unseen data.

Find the “sweet spot” between underfitting and overfitting to minimize the overall expected risk.

17/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

1 Statistical Learning Theory

2 Regularization

3 Hyperparameter Tune

4 Overparameterization

18/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

DNNs Can Fit Random Labels and Random Data

Label corruption: Replace true label with
random label
Shuffled pixels: The pixels of each image are
rearranged using a fixed random permutation
Random pixels: Each image has a unique
random arrangement of pixels).
Gaussian: The pixels in images are replaced
with random Gaussian noise.
Average loss: Training error using the
cross-entropy loss

Key Observation
DNNs can perfectly fit random labels or data, achieving zero training error even on completely
unstructured inputs.

Zhang et al. “Understanding deep learning requires rethinking generalization” ICLR 2017.
19/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

Weight Decay

20/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Weight Decay

Regularization typically involves adding an extra term, called the regularizer, to the training loss:

Lλ(θ) := L(θ) +
λ

2
∥θ∥2,

where λ > 0 is the regularization hyperparameter, and ∥ · ∥ is the Euclidean norm.
In deep learning, this regularization is known as weight decay because gradient descent on the
regularized loss automatically shrinks (or decays) parameter θ by the factor (1− ηλ):

θ+ =θ − η∇θLλ(θ) = θ − η [∇θL(θ) + λθ]

= (1− ηλ)︸ ︷︷ ︸
decaying weights

θ − η∇θL(θ).

However, θ does not shrink to zero, as it must maintain a certain value to minimize the cost L(θ).

21/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Interpretation: Sparsity

The regularized optimization can be reformulated as:

min
θ
L(θ), s.t. ∥θ∥ ≤ Cλ,

where Cλ > 0 is a constant that depends on λ.
In deep learning, θ is called sparse if most parameters are zero or close to zero (i.e., θi ≈ 0).
Sparse θ reduces the flexibility and complexity of the DNN, leading to a simpler model.

22/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Interpretation: Linearity

Consider a simple two-layer neural network:

fθ(x) =

n∑
i=1

viϕ(wix),

where x ∈ R is a scalar and ϕ(·) is tanh.

When wi ≈ 0, then wix ≈ 0, and the network operates near the
linear region of tanh:

viϕ(wix) ≈ vi(wix) ≈ (viwi)x = uix =⇒ a linear model,

where ui := viwi.
If vi ≈ 0, then

viϕ(wix) ≈ 0,

indicating fewer neurons are used.

23/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Interpretation: Stability

A learning algorithm is stable if small changes to its input do not result in large changes to its output.
Consider the same two-layer neural network:

fθ(x) =

n∑
i=1

viϕ(wix).

The derivative of fθ with respect to the input x is:

∇xfθ(x) =
n∑

i=1

viϕ
′(wix)wi.

If either vi or wi is small, then ∇xfθ(x) is small.
Hence, DNNs with sparse parameters are generally more stable than those with dense parameters.

24/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

Dropout

25/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Dropout Regularization
Recall the forward propagation:

zℓ = W ℓxℓ−1, xℓ = ϕ(zℓ).

During training, each neuron is randomly dropped with probability p (a hyperparameter):

zℓ = W ℓ
(
rℓ ⊙ xℓ−1

)
, xℓ = ϕ(zℓ),

where rℓ
i

i.i.d.∼ Bernoulli(p) and ⊙ is element-wise product.

The gradient update applies only to a thinned subbnet of the network.
At test time, dropout is turned off, and weights are scaled by p to respect the dropout probability:

zℓ = pW ℓxℓ−1.

26/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Interpretation: Implicit Ensemble Learning

By randomly dropping units, a different thinned subnet is trained at each gradient descent step.
With n neurons in the full network, we are effectively training 2n different subnets simultaneously
that all share the same weights.
At test time, the output is an ensemble prediction, aggregating the contributions of all subnets.

Key Insight
Dropout ensures that no single neuron or small group of neurons can dominate the prediction. By
spreading the responsibility across all units, it improves model robustness to the input change and
prevents overfitting.

27/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

Stochastic Weight Averaging

28/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Trajectories of SGD

Let us continue to run SGD from a well trained model and visualize the trajectory

0 10 20 30 40 50

0

10

20

30

Train loss

0.1835

0.1981

0.2152

0.2522

0.3324

0.5062

0.883

1.7

> 1.7

0 10 20 30 40 50

0

10

20

30

Test error (%)

21.9

22.58

23.17

24.26

26.28

30.04

37.03

50

> 50

SGD oscillates around the periphery of high-performing solutions, and averaging SGD iterates
improves test performance.
SGD trajectories resemble a high-dimensional Gaussian-like distribution, with most of the mass
concentrated in a thin shell.

29/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Averaging Weights for Better Performance

Averaging SGD iterates leads to improved generalization:

w̄ =
1

k

k∑
i=1

wi

Averaging weights approximates ensembling predictions via linearization (if the weights are close):

1

k

k∑
i=1

f(wi) ≈ f

(
1

k

k∑
i=1

wi

)
= f(w̄)

Moving average formulation:

wk+1 = wk − η∇L(wk)

wk+1
swa = (1− βk)wk

swa + βkwk+1

where βk = k
k+1

or βk = β ∈ (0, 1).

30/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Summary

DNNs can fit random labels and data, achieving zero training error.
Weight decay controls large weights, promoting sparsity, linearity, and stability.
During training, dropout randomly drops units, effectively training an exponential number of
thinned subnets simultaneously.
At test time, the output is an ensemble prediction, aggregating contributions from all subnets.
SGD oscillates near the boundary of local minima, while SWA finds a centralized solution in a
flatter region.
SWA approximates ensemble predictions through linearization.

31/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

1 Statistical Learning Theory

2 Regularization

3 Hyperparameter Tune

4 Overparameterization

32/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Recap: Hyperparameters in Neural Networks

The training process involves several key hyperparameters:
Loss Function ℓ(·, ·): Square loss, cross-entropy loss, hinge loss
Activation Function ϕ(·): Step, sigmoid, ReLU, tanh, GELU
Optimizer: SGD, Momentum, RMSProp, Adam, AdamW
Learning Rate (η), Batch Size (b), Epochs
Network Type: MLPs, CNNs, RNNs, Transformers, GNNs
Width and Depth
Layers: Normalization, pooling, dropout, softmax
Otherwise: Initialization (Xavier, He), ℓ2-regularization, gradient clipping, early stop

Key Difference: Hyperparameters vs. Trainable Parameters
Hyperparameters are not trainable. Unlike weights and biases, they need to be tuned.
Proper tuning is essential for faster convergence during training and achieving good
generalization performance.

33/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Validation Set

Split the dataset into three parts: training set, validation set, and test set.
Build the model using the training set.
Optimize or tune hyperparameters on the validation set.
After tuning, evaluate the final model on the test set.
Suggested split ratios:

For datasets between 100 and 1,000,000 samples: 60/20/20.
For datasets larger than 1,000,000 samples: 98/1/1.

Ensure the validation and test sets come from the same distribution.
Example: Training and validation images from the web, but test images from user cell phones can
cause a mismatch.

34/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Tuning Process

Grid Search: Systematically explores a predefined set of hyperparameters; comprehensive but
expensive
Random Search: Randomly sample hyperparameters; more efficient than grid search when some
hyperparameters are less important.
Hyperband/Successive Halving: Dynamically allocate resources and discard poor configurations
early, ideal for deep networks with long training times.
Start with coarse tuning, then refine gradually.
Use log scale for hyperparameter search when appropriate, e.g., learning rate η and smoothing
factors β

Leverage parallelization to run multiple experiments simultaneously to accelerate the search.

35/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Input Normalization

Normalize the inputs using training set:

µ =
1

n

n∑
i=1

xi, x̄i = xi − µ, σ2 =
1

n

n∑
i=1

x̄2
i , x̂i = x̄i/σ,

where all operations are taken element-wise.
Consider a binary classification problem using linear model: fθ(x) = w1x1 + w2x2

if x1 = O (100) and x2 = O (1), to have output fθ = O (1), we must have w1 = O
(

1
100

)
and

w2 = O (1).
After normalization, x̄1 = O (1) and x̄2 = O (1), so we have w1 = O (1) and w2 = O (1).

At test time, apply µ and σ from training to test set.
36/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Learning Rate Decay

Recall that an epoch k is one pass through all mini-batches in SGD
Instead of using a fixed learning rate, one can consider using learning rate decay

ηk =
η

k
, ηk =

η√
k
, ηk = (0.95)kη

37/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Bag of Tips
Learning Rate η:

Log-scale search: 10−5 ∼ 10−1.
Learning rate schedules: Linearly warm up, then decay periodically for smooth convergence.
Early stopping: Monitor loss curves to detect divergence.

Batch Size b:
Small batches (e.g., 16 ∼ 128) generalize better, but noisy gradient.
Large batches (e.g., 256 ∼ 4096) converge faster but may require higher learning rates.
Rule of Thumb: Use the largest batch size that fits in memory, then tune; η′ = η × b′

b
.

Weight Decay:
Log-scale search: 10−5 ∼ 10−3.
For Adam: Use AdamW instead of standard weight decay.

w ← w − η
v√
s+ ε

− ηλw =⇒ w ← w − η
v√
s+ ε

− λw

where weight decay is scaled by the small η in Adam, reducing the regularization effect.
If validation loss diverges while training loss improves, increase weight decay.

Dropout:
Start with 0.2 ∼ 0.5 for input layers, 0.5 ∼ 0.8 for hidden layers.
Combine dropout with ℓ2-regularization but avoid using it with Batch normalization.

38/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Optimizers:
SGD+Momentum: More stable than vanilla SGD.
Adam works well for most tasks with default values β1 = 0.9 and β2 = 0.999

Use AdamW for better weight decay handling.
RMSProp: Useful for RNNs and reinforcement learning.

Network Architecture (Depth and Width):
Start simple and gradually increase the complexity
More layers (depth) improve feature extraction, using skip connections if too deep
More neurons (width) increase capacity and stabilize training

Activation Functions:
ReLU: Standard choice for DNNs.
Leaky ReLU: Fixes dying ReLU problem (α = 0.01).
GELU: Used in Transformers.
Swish: Works well in CNNs.

39/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Outline

1 Statistical Learning Theory

2 Regularization

3 Hyperparameter Tune

4 Overparameterization

40/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Overparameterization

A deep neural network (DNN) is said to be overparameterized when the number of neurons or
parameters is much larger than the number of training samples.
This might seem counterintuitive, but it has been found to be surprisingly beneficial in practice.

106 108

#param

0.00

0.05

0.10

0.15

er
ro

r

ResNet18

training error
test error

23 27 211 215

#hidden units

0.0

0.2

0.4

0.6

er
ro

r

two layer ReLU net

training error
test error

Behnam, et al. “Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks,” ICLR 2019.
41/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Double Descent

Overparameterized neural networks can perfectly fit or interpolate the training data.
Mathematically, there exists a set of parameters θ such that

fθ(xi) = yi, ∀i ∈ [n]. (1)

Overparameterization implies there are infinitely many interpolation solutions.
Some interpolation solutions generalize much better than those in the underparameterized regime.
This phenomenon is called double descent.

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

42/43

Statistical Learning Theory Regularization Hyperparameter Tune Overparameterization

Implicit Regularization

It is important to understand that different global minima lead to varying test performances.
A flat minimum typically results in better generalization than a sharp minimum.
Different optimizers may converge to different minima, each with different generalization
outcomes. This is known as implicit regularization.
Thus, even if your current optimizer achieves low training error, tuning or adjusting it may still be
necessary to achieve better test performance.

Flat Minimum Sharp Minimum

Training Function
Testing Function

L(θ)

43/43

	Statistical Learning Theory
	Regularization
	Hyperparameter Tune
	Overparameterization

