
Optimization in Neural Networks

Tianxiang (Adam) Gao

Jan 23, 2025

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

1 Calculus Review: Second Derivatives

2 Convergence Issues

3 Advanced Optimization Algorithm

2/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Recap: Neural Network Training

We use a training process iteratively update the parameters in MLPs:
MLPs are parameterized function fθ, where θ = {W ℓ, bℓ}
Universal Approximation Theorem (UAT): MLPs can approximate “any” function f∗ arbitrarily
accurate, provided sufficient parameters (and training samples).
Given a training set {xi,yi}ℓi=1 and a loss function ℓ, the training problem is:

min
θ

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi),yi)

This optimization problem can be solved using gradient descent, which gradually reduces the
cost L along the steepest descent direction:

θ+ = θ − η∇L(θ)

where η > 0 is the learning rate.
The gradients in MLPs can be computed using the chain rule backward from the total cost.

3/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Recap: Neural Network Training
Using the computational graph, the gradients can be computed through backpropagation:

• Forward Propagation (biases omitted): Start with x0 = x

zℓ = W ℓxℓ−1, ∀ℓ ∈ {0, 1, 2, . . . , L}

xℓ = ϕ(zℓ),

• Backward Propagation (biases omitted): Start with dzL = (xL − y)⊙ ϕ′(zL)

dzℓ =
[
(W ℓ+1)⊤dzℓ+1

]
⊙ ϕ′(zℓ), ∀ℓ ∈ {1, 2, . . . , L− 1}

dW ℓ = dzℓx(ℓ−1)⊤

To enable training, we use the sigmoid activation instead of the step function, as the step
function has a zero derivative almost everywhere.
Random initialization is preferred over zero initialization to avoid the issue of symmetric patterns.

Questions
What are other common activation functions?
How do I select the learning rate, width, and depth of the network?
Does gradient descent always converge? How can I speed up training?
Does good training performance guarantee good test performance?

4/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

1 Calculus Review: Second Derivatives

2 Convergence Issues

3 Advanced Optimization Algorithm

5/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Calculus Review: Extreme Values

Let f(x) be a real-valued function, where x ∈ R.

Local Min. x1, x3, x5, x7, x9;
Local Max. x2, x4, x6, x8;

The function f has an local minimum at point x = a if
f(a)≤f(x) when x is near a.
The function f has an local maximum at point x = a if
f(a)≥f(x) when x is near a.
The point a is a global minimum or global maximum if the above
property holds for all x.
Fermat’s Theorem: If f has a local min or max at x = a, then
f ′(a) = 0, as f ′(a) points to the steepest ascent direction.
A point x = a is called stationary if f ′(a) = 0.
Gradient descent stops at stationary points:

θ+ = θ − η∇θL(θ).

6/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Calculus Review: Curvature

Definition: The second derivative of a real-valued function f(x) measure the rate of change of the
first derivative f ′(x) at point x, e.g., the acceleration of an object’s position w.r.t. time.

f ′′(a) ≈ f ′(x)− f ′(a)

x− a

Concavity: the second derivative f ′′(x) describes whether f is concave
up or concave down

If f ′′(x) > 0, then f is concave up at x.
If f ′′(x) < 0, then f is concave down at x.

The Second Derivative Test:
If f ′(a) = 0 and f ′′(a) ≥ 0, then a is a local minimum
If f ′(a) = 0 and f ′′(a) ≤ 0, then a is a local maximum.

Conclusion
The goal of training in deep learning is to find a good local minimum that generalizes well.

James Stewart, “Calculus.”
7/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Hessian Matrix

Let f(x) be a multivariate real-valued function, where x ∈ Rn.
A point x = a is called stationary point if ∇f(a) = 0, i.e.,

∇f(a) =
[
∂f(a)
∂x1

· · · ∂f(a)
∂xn

]⊤
= 0

The Hessian matrix H(w) ∈ Rn×n of f is the symmetric matrix of second-order partial
derivatives:

∇2f(x) = H(x) =

∂2f

∂x2
1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2

. . . ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

For the second-order mixed partial derivative ∂2f

∂x∂y
is the rate of change of ∂f

∂x
w.r.t. y changes,

holding x constant.

8/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Significance of Hessian

Interpretation of the Hessian Matrix:
The Hessian describes the local curvature of the function.
Positive definite Hessian H implies a local minimum, i.e., concave up in any direction.
Negative definite Hessian implies a local maximum, i.e., concave down in any direction.
Indefinite Hessian implies a saddle point, i.e., concave up in some directions and concave down
in others.

9/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Discussion Questions

Compute the gradients and Hessian of the following functions:
f(w) = 1

2
(xw − y)2

f(w) = 1
2
∥Xw − y∥2, where

w =

[
w1

w2

]
, X =

[
3

1

]
, y =

[
1
0

]
Hint: write f(w) = f(w1, w2) =

1
2
(3w1 − 1)2 + 1

2
w2

2.

Instructions: Discuss these questions in small groups of 2-3 students.

10/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Solutions to the Discussion Questions

Compute the gradients and Hessian of the following functions:
f(w) = 1

2
(xw − y)2, f ′(w) = x · (xw − y), and f ′′(w) = x2.

f(w) = 1
2
∥Xw − y∥2, where

w =

[
w1

w2

]
, X =

[
3

1

]
, y =

[
1
0

]
Hint: Write f(w) = f(w1, w2) =

1
2
(3w1 − 1)2 + 1

2
w2

2. We have

∇f(w) = X⊤(Xw − y) =

[
3(3w1 − 1)

w2

]
and H(w) =

[
9

1

]
,

Here 9 is the largest eigenvalue of H, 1 is the smallest eigenvalue of H, and their ratio is
called conditional number κ = 9.

11/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

1 Calculus Review: Second Derivatives

2 Convergence Issues

3 Advanced Optimization Algorithm

12/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Learning Rate

Learning Rate

13/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

One-Dimensional Linear Regression

Consider a simple one-dimensional linear regression problem:

min
w

L(w) = ℓ(fθ(x), y) =
1

2
(wx− y)2,

where w, x, y ∈ R.
The function fθ(x) = wx is a perceptron with linear activation, without a bias term.
With gradient ∇L(w) = x(wx− y), the gradient descent update is:

w+ = w − η · x(wx− y),

where η > 0 is the learning rate.
To find the stationary point:

∇L(w) = 0 =⇒ x(wx− y) = 0 =⇒ w∗ =
y

x

Second derivative test:

∇2L(w∗) = x2 > 0,

i.e., w∗ is a local minimum (and also a global minimum since L is concave up everywhere).

14/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Recursive Formula for Gradient Descent on LSR

The update rule for Gradient Descent applied to linear regression is:

wk+1 = wk − η · x(wkx− y) = (1− ηx2)wk + ηxy := awk + b,

where a := 1− ηx2 and b := ηxy.
Using this recurrence relation, wk+1 can be expanded as:

wk+1 = awk + b

= a(awk−1 + b) + b

= a2wk−1 + ab+ b

= a3wk−2 + a2b+ ab+ b

= ak+1w0 + b
(
ak + ak−1 + · · ·+ a+ 1

)
= ak+1w0 + b

1− ak+1

1− a

= ak+1(w0 − w∗) + w∗,

where we use the geometric series
∑k

i=0 a
i = 1−ak+1

1−a
and w∗ = y

x
.

15/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Impact of Learning Rate on Convergence

The recurrence relation:

wk+1 = ak+1(w0 − w∗) + w∗

Here, the value of a = 1− ηx2 leads to the following behaviors as k → ∞:

Slow Just Right Oscillation Divergence

Convergence: If η < 2/x2, then |a| < 1, so ak → 0, and wk converges to the minimum w∗.
Oscillation: If η = 2/x2, then a = −1, and wk oscillates around w∗ with
wk+1 = (−1)k+1(w0 − w∗) + w∗.
Divergence: If η > 2/x2, then |a| > 1, leading to ak → ∞, causing wk to diverge.

16/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Residual Dynamics in Gradient Descent

The update rule for Gradient Descent on LSR is:

wk+1 = wk − η · x(wkx− y).

From this, we can derive a recurrence relation for the residual or error εk+1:

εk+1 = wk+1x− y

=
[
wk − η · x(wkx− y)

]
x− y

= (1− ηx2) · εk

= a · εk,

where a := 1− ηx2 and εk = wkx− y is the error at step k. Repeating this relation, we obtain:

εk+1 = ak+1ε0,

where ε0 = w0x− y is the initial error.

17/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Loss Landscape

Loss Landscape

18/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Curse of Dimensionality in Optimization

As the dimensionality of variables and the size of data increase, optimization becomes more
challenging. For example, consider the following loss function:

L(w) =
1

n

n∑
i=1

1

2
(w⊤xi − yi)

2 =
1

2n
∥Xw − y∥2

The recurrence relation for wk+1 becomes:

wk+1 =
(
I − η

n
XX⊤

)k+1

(w0 −w∗) +w∗ = Ak+1(w0 −w∗) +w∗,

where A := I − η
n
XX⊤.

Similarly, the dynamics of the residual ek = Xwk − y is given by:

ek+1 = Aek = Ak+1e0

The dynamics are governed by the matrix A, rather than a scalar. In deep learning, this system
becomes even more complex as A can change during training, i.e., A(k).

19/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

3D Loss Landscape Visualization

Consider a case where w = (w1, w2). Below is the 3D contour of L(w):

Well-Conditioned Ill-Conditioned

The loss landscape is not always smooth and easy to optimize:

X1 =

[
1 0.1
0 1

]
, v.s. X2 =

[
3 0.1
0 1

]

20/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Challenges in Gradient Descent: Zig-Zag Patterns

In ill-conditioned systems, gradient descent can only progress with a small learning rate. The
following examples illustrate different behaviors:

Fast Convergence (η = 1.0) Divergence (η = 0.23) Zig-Zag Pattern (η = 0.22)

Key Observations
Ill-conditioned systems cannot tolerate large learning rates.
Even with a small learning rate, gradient descent may exhibit a zig-zag pattern.

21/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Ill-Conditioned Systems

Consider the recurrence relation for ill-conditioned systems:

ek+1 =
(
I − η

n
XX⊤

)k+1

e0 =

[
1− 9η

2

1− η
2

]k+1

e0 =

[
(1− 9η

2
)k+1

(1− η
2
)k+1

]
e0.

where we use n = 2 and

X =

[
3

1

]
, and XX⊤ =

[
9

1

]

From the first exponential, convergence requires |1− 9η/2| < 1, i.e., η < 4
9
.

From the second exponential, convergence requires |1− η/2| < 1, i.e., η < 4.

Key Observations: Condition Number and Learning Rate
To ensure convergence, we must choose η < 4

9
.

One direction converges may be slower than the other, leading to the zig-zag behavior.
This occurs because the condition number κ of the Hessian H(w) is large, i.e., κ = 9.

22/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Gradients Vanishing and Exploding

Gradients Vanishing and Exploding

23/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Information Propagation in Deep Neural Networks

Forward Propagation (biases omitted): Starting with x0 = x,

zℓ = W ℓxℓ−1, ∀ℓ ∈ {0, 1, 2, . . . , L},

xℓ = ϕ(zℓ),

where ϕ(z) is the activation function.
Assuming a linear activation function ϕ(z) = z for simplicity:

xℓ = W ℓxℓ−1 =

[
a

a

]ℓ
x0 = aℓx0.

As ℓ increases:
If a > 1, then xℓ grows exponentially (explodes).
If a < 1, then xℓ diminishes exponentially (vanishes).

24/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Backward Propagation and Gradient Behavior

Backward Propagation (biases omitted): Start with dzL = (xL − y)⊙ ϕ′(zL):

dzℓ =
[
(W ℓ+1)⊤dzℓ+1

]
⊙ ϕ′(zℓ), ∀ℓ ∈ {1, 2, . . . , L− 1},

dW ℓ = dzℓx(ℓ−1)⊤.

With linear activation, ϕ′(x) = 1:

dzℓ = (W ℓ+1)⊤dzℓ+1 =

[
a

a

]
dzℓ+1 = aL−ℓdzL.

As ℓ becomes far from L:
If a > 1, then dzℓ grows rapidly (exploding gradients).
If a < 1, then dzℓ diminishes rapidly (vanishing gradients).

25/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Summary

Learning Rate:
Small learning rates slow down the training.
Large learning rates can cause oscillations or divergence.

Loss Landscape:
The loss landscape is often ill-conditioned in DNNs, with local minima, maxima, and saddle points.
Ill-conditioned local structure prevents using a large learning rate in gradient descent.

Gradient Vanishing and Exploding:
Information propagation in DNNs can be unstable.
Lower layers tend to have small gradient values due to vanishing gradients.
Differing gradient scales can lead to ill-conditioned local structures.

26/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

1 Calculus Review: Second Derivatives

2 Convergence Issues

3 Advanced Optimization Algorithm

27/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

Gradient Descent with Momentum

28/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

The Trajectory of Gradient Descent

Let us take a close look at the trajectory of gradient descent (GD):

29/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Average Search Direction

The general iterative training process is defined as:
w+ = w − η · v,

where v is the search direction, and η is the learning rate. We take v = ∇L(w) for GD.
Given a trajectory of GD up to the k-th iteration, the sequence of gradient directions is:

{g0, g1, · · · , gk−1}, where gi = ∇L(wi) =⇒ vk =
1

k

k−1∑
i=0

gi.

Smooth out noisy gradients and maintain a more stable descent trend over iterations

30/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

GD with Averaged Gradient Direction
By applying the idea of averaging the negative gradient direction, we have:

vk+1 =
1

k + 1

k∑
i=0

gi,

wk+1 = wk − η · vk+1.

The cumulative average can be rewritten in a running update form:

vk+1 =
1

k + 1

(
k−1∑
i=0

gi + gk

)

=
k

k + 1
· 1
k

k−1∑
i=0

gi +
1

k + 1
gk

=
k

k + 1
vk +

(
1− k

k + 1

)
gk.

With βk = k−1
k

, gradient descent with an averaged gradient direction is given by:

vk+1 = βk+1v
k + (1− βk+1) g

k,

wk+1 = wk − η · vk+1.

Only needs to store the most recent vk, instead of the entire {g0, · · · , gk}
31/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Gradient Descent with Momentum

Fixing βk = β for β ∈ (0, 1), i.e., β = 0.9, the update rule becomes:

vk+1 = βvk + (1− β)gk,

wk+1 = wk − η · vk+1,

Here, β balances the influence of past gradients vk and the current gk on the update.
The value of β determines the effect memory length n ≈ 1

1−β
, e.g., β = 0.9 corresponds to

n ≈ 10 and β = 0.99 corresponds to n ≈ 100.
This method is also referred to as Gradient Descent (GD) with Momentum or accelerated GD:

wk+1 = wk − η · vk+1

= wk − η ·
[
βvk + (1− β)gk

]
= wk − η(1− β)︸ ︷︷ ︸

:= α

·gk + β · (wk −wk−1)︸ ︷︷ ︸
Momentum

,

The current update is influenced both by the latest gradient and the past movement (momentum).

32/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Impact of Momentum in Gradient Descent

Gradient Descent with momentum:

wk+1 = wk − η(1− β) · gk + β · (wk −wk−1).

Gradient Descent (GD) converges in 84 steps with η = 0.22, while GD with momentum converges
in 36 steps with η = 0.63 and β = 0.6.
For further reading, see this illustration on the impact of momentum.

Accelerated GD requires O(
√
k) iteration to achieve the error level that standard GD achieves in O(k) iterations.

33/48

https://distill.pub/2017/momentum/

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Damping in Gradient Descent with Momentum

Gradient Descent with momentum:

wk+1 = wk − α · gk + β · (wk −wk−1).

Key Observation
A large momentum factor β can cause the loss to oscillate and not consistently decrease.
This oscillation often occurs around the stationary point.

34/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Summary

Gradient Descent with momentum:

wk+1 = wk − α · gk + β · (wk −wk−1).

The current update is influenced by both the most recent gradient and the past movement.
The search direction in GD with momentum is a running average of past gradients.
Momentum allows for larger learning rates and faster convergence.
Too large a momentum factor β can cause damping in the loss and oscillation around the
stationary point.

35/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

Adaptive Gradient Descent

36/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Divergent Gradient Scaling

During the GD, the magnitudes of the gradient coordinates can vary significantly. One approach is to
scale the magnitudes so that each gradient coordinate has an order of O(1) magnitude.

37/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

RMSProp

By applying the idea of a running average on the gradient magnitudes, the scaling factors are:

s+ = βs+ (1− β)g2,

w+ = w − η · g√
s+ + ε

,

where all operations including x2, √x, and x/y are taken element-wise, and ε is a small value
(e.g., ε = 10−8) preventing dividing by zero.
This method is called root mean squared propagation (RMSP).
RMSProp is effectively an adaptive learning rate algorithm:

w+
i = wi − ηi · gi,

where ηi = η/
√

s+i is the adaptive learning rate.
Each gradient coordinate has a unique, adaptive learning rate.

38/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Performance of RMSProp
RMSProp:

s+ = βs+ (1− β)g2,

w+ = w − η · g√
s+ + ε

.

GD converges in 84 steps with η = 0.22.
RMSProp converges in 43 steps with η = 0.07 and in 10 steps with η = 0.22.
Note: RMSProp may not perform well with large learning rates.

39/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Adam
The Adaptive Moment Estimation (Adam) algorithm combines the advantages of GD with
momentum and RMSProp:

v+ = β1v + (1− β1)g,

s+ = β2s+ (1− β2)g
2,

w+ = w − η · v+

√
s+ + ε

,

where typical values in training DNNs are β1 = 0.9 and β2 = 0.99.

GD converges in 84 steps with η = 0.22.
GD with momentum converges in 35 steps with η = 0.63 and β = 0.6.
RMSProp converges in 43 steps with η = 0.07.
Adam converges in 32 steps with η = 0.74.
v0 = 0. 40/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Bias-Corrected Adam

The bias-corrected Adam adjusts the moving averages to account for their initial bias toward zero:

vk+1 = β1v
k + (1− β1)g

k, v̂k+1 =
vk+1

1− βk
1

,

sk+1 = β2s
k + (1− β2)(g

k)2, ŝk+1 =
sk+1

1− βk
2

,

wk+1 = wk − η · v̂k+1

√
ŝk+1 + ε

,

The bias correction improves accuracy, especially during the early training steps.

41/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Summary

Adaptive gradient descent (AdaGrad) scales each gradient coordinate to have the same O(1)
magnitudes.
Adaptive methods provide an adaptive learning rate for each gradient coordinate.
Typically, adaptive methods do not use large learning rates.
Adam combines momentum-based and adaptive scaling techniques, balancing fast convergence
with gradient smoothing.
Adam applies bias correction to compensate for the initial bias of moving averages toward zero.

42/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Outline

Stochastic Gradient Descent

43/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Stochastic Gradient Descent (SGD) Overview
Recap: Training deep neural networks as an optimization problem over parameters θ:

min
θ

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi), yi)

The gradient descent (GD) update rule is:

θ+ = θ − η∇θL(θ) = θ − η · 1
n

n∑
i=1

∇θℓi(θ),

where ℓi(θ) := ℓ(fθ(xi), yi) is the loss for sample i.
In practice, the number of training samples n can be extremely large (millions or even billions).
Computing the gradient over all samples becomes computationally expensive.
Stochastic Gradient Descent (SGD): Instead of computing the gradient over the full dataset, we
randomly select a smaller batch B of samples (called a mini-batch):

θ+ = θ − η · 1

|B|
∑
i∈B

∇θℓi(θ)

The size of the mini-batch |B| can vary. If |B| = 1, it is called SGD. Otherwise, it is called
mini-batch SGD.

44/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Mini-batch SGD and Epochs

In mini-batch SGD, the entire dataset is typically divided into several mini-batches of a fixed size b.
The mini-batches are often selected by random shuffling (or permutation), and the model is
updated iteratively for each mini-batch.
After processing all mini-batches once, we complete an epoch, and the process can be repeated
for multiple epochs until convergence.

Efficiency: Mini-batch SGD can be computationally efficient because each update is based on a
subset of data, reducing the cost per iteration.
Advanced Techniques: Mini-batch SGD can be combined with other optimization techniques,
such as momentum, RMSProp, and Adam.

45/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

SGD vs. Full Batch Gradient Descent

Stochastic Behavior: Unlike full-batch gradient descent, the loss function in SGD does not
always decrease at every step due to the randomness of mini-batches. This can cause oscillations.
Convergence Speed: Although SGD may take more iterations to converge in theory, it often
converges faster in terms of wall-clock time due to its lower per-iteration computational cost.
Trade-off: Full-batch GD ensures a consistent reduction in loss at each step, but the cost per
iteration is high, especially for large datasets. SGD trades off some accuracy for faster
convergence.

46/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Summary

Calculus Review:
A point a is a local minimum of f(x) if f(a) ≤ f(x) for all x near a.
A point a is stationary if ∇f(a) = 0, and gradient descent stops at a.
A stationary point a is a local minimum if the Hessian H(a) ⪰ 0, i.e., the function is concave up.

Convergence Issues:
Small learning rates lead to slow convergence.
Large learning rates cause oscillations or divergence.
DNN loss landscapes are complex, with high and varied condition numbers κ.
Ill-conditioned loss landscapes cause zig-zag patterns in gradient descent.
Unstable information propagation in DNNs leads to vanishing or exploding gradients.

47/48

Calculus Review: Second Derivatives Convergence Issues Advanced Optimization Algorithm

Advanced Optimizers

Averaging gradients leads to a smoother descent direction.
Gradient descent with averaged search directions is equivalent to GD with momentum.
Momentum allows faster convergence with larger learning rates.
Too large a learning rate may cause damping or oscillations during training.
Adaptive methods like RMSProp scale gradients to ensure consistent O(1) magnitudes.
Adaptive optimizers provide an adaptive learning rate for each gradient coordinate.
Adam applies bias correction to counteract the initial bias in moving averages.
Mini-batch SGD is computationally efficient, updating weights using subsets of data to accelerate
training.
SGD can be combined with advanced optimizers (e.g., momentum, RMSProp, Adam).

Questions
What are common activation functions beyond sigmoid and ReLU?
How should I choose learning rate, width, and depth for my network?
Does gradient descent always converge? How can I speed up training?
Does good training performance guarantee good test performance?

48/48

	Calculus Review: Second Derivatives
	Convergence Issues
	Advanced Optimization Algorithm

