Overview of Deep Learning

Tianxiang (Adam) Gao

Jan 9, 2025

<ロト < 部 ト < 言 ト く 言 ト ミ の < (や 1/29

What is Deep Learning?	Brief History of Neural Networks	Perceptron	Multilayer Perceptrons
000	000000000	000000000	000000
Outline			

Prief History of Neural Networks

Perceptron

・ロ・・ 「中・・ 川・・ 一川・ ・ (日・

What is Deep Learning?	Brief History of Neural Networks	Perceptron	Multilayer Perceptrons
•00	00000000	00000000	
Recap: What is Al?			

- Artificial Intelligence (AI) is a broad field that focuses on creating systems capable of performing tasks that typically require human intelligence.
- To pass the (total) Turing Test, it needs:
 - Natural language processing (NLP) to enable it to communicate effectively;
 - Knowledge representation to store and retrieve information;
 - Automated reasoning to use the stored information to answer questions and to draw new conclusions;
 - Machine learning (ML) to recognize patterns from data and adapt to new situations;
 - Computer vision (CV) to perceive objects;
 - Robotics to manipulate and interact with the physical world.

Recap: What is ML?

- Machine learning (ML) is a subset of AI that focuses on developing algorithms and (statistical) models to learn from (training) data and generalize to unseen data.
- Commonly used algorithms and models are categorized into:
 - *Supervised learning*: linear/logistic regression, supper vector machines (SVM), decision trees, and <u>neural networks</u>
 - Unsupervised learning: k-means clustering, dimensionality reduction, Gaussian mixture models, generative models
 - Reinforcement learning: Q-Learning, policy gradient, deep Q-networks (DQN)

What is Deep Learning?	Brief History of Neural Networks	Perceptron	Multilayer Perceptrons
○○●	000000000	00000000	
What is DI ?			

- **Deep learning (DL)** is a subset of ML that focuses on using *deep neural networks (DNN)* with many layers to learn *representation* in (large) datasets.
 - It is capable of **automatically** learning features from raw data, unlike other machine learning models that rely on manually crafted features.
 - It learns the intricate structures from data by using *backpropogation* to update the parameters in DNN.
 - It encompasses various neural network architectures, including *convolutional neural Networks (CNNs)*, *recurrent neural networks (RNNs)*, *transformers*, and *graph neural networks (GNNs)*, each tailored to specific *tasks*.
 - It has led to significant breakthroughs in various applications, such as CV, NLP, speech recognition, and biomedical science.

2 Brief History of Neural Networks

Early Beginnings and "AI Winters"

1940s: Early Beginnings

- In 1943, Warren McCulloch and Walter Pitts introduced the first mathematical model of a neuron, the McCulloch-Pitts Neuron Model.
- In 1949, Donald Hebb proposed Hebbian learning in his book The Organization of Behavior, summarized as "cells that fire together wire together."

1950s-1960s: Perceptron and the First "AI Winter"

- **1** In 1958, Frank Rosenblatt proposed the **perceptron**, an early neural network model.
- In 1969, Marvin Minsky and Seymour Papert demonstrated that the perceptron could not solve non-linear problems, such as the XOR problem, leading to the first "AI winter."

1980s-1990s: Revival with Expert Systems and Backpropagation

- In 1980, XCON became one of the first commercially successful expert systems, marking a turning point for Al in the industry.
- In 1986, Geoffrey Hinton, David Rumelhart, and Ronald Williams popularized backpropagation in their Nature paper, "Learning Representations by Back-Propagating Errors."

1990s-2000s: The Second "AI Winter"

- The second "AI winter" occurred mainly due to the failure of **expert systems** to scale and generalize beyond narrow, rule-based tasks.
- Neural networks, despite the promise shown after the introduction of backpropagation, were still constrained by limited **computational power**, **scalability issues**, and **insufficient data**.

Emergence of Deep Learning

1990s-2000s: Advancements and the Emergence of Deep Learning

- In 1989, Yann LeCun et al. created the LeNet as an early example of a CNN, which became critical for image processing tasks.
- In 1997, the Long Short-Term Memory (LSTM) network was proposed by Sepp Hochreiter and Jürgen Schmidhuber that overcome the problem of vanishing gradients in RNNs

What is Deep Learning? 000	Brief History of Neural Networks	Perceptron 00000000	Multilayer Perceptrons
Modern Era: AlexNet 2012			

2010s-Present: Deep Learning Revolution

• In 2012, AlexNet trained using GPUs dominated the ImageNet competition

ImageNet is a large-scale image dataset consisting of 1,000 classes, 1 million training samples, and 100,000 test samples. 💈 🗠 🔍

What is Deep Learning?	Brief History of Neural Networks	Perceptron 000000000	Multilayer Perceptrons
Modern Era: ResNet 2015			

2010s-Present: Deep Learning Revolution

• In 2015, the introduction of skip connection in **ResNet** allowed the training of deeper networks, *e.g.*, 152 layers, achieving **better-than-human** performance on ImageNet

What is Deep Learning? 000	Brief History of Neural Networks	Perceptron 00000000	Multilayer Perceptrons
Modern Era: AlphaC	o 2016_2017		

2010s-Present: Deep Learning Revolution

- In 2016, **AlphaGo** gained worldwide attention by defeating South Korean professional Go player Lee Sedol, one of the best players in the world, showing that AI can master complex and strategic games.
- In 2017, AlphaGo further cemented its dominance by defeating the world's *number one* Go player, Ke Jie of China, in a best-of-three match, **winning all three games**.

Modern Era: The Transformer and Attention 2017-2022

2010s-Present: Deep Learning Revolution

- In 2017, the **Transformer architecture** and **attention mechanism** revolutionized NLP, CV, and other scientific fields with superior performance on complex tasks.
- In 2018, **BERT** and **GPT** emerged as foundational pre-trained models, significantly improving NLP tasks across various applications.
- In 2020, OpenAl introduced GPT-3, the largest language model of its time, with 175 billion parameters, trained on 499 billion tokens (approximately 570 GB of text) using 10,000 GPUs over several months.
- In 2022, OpenAl released **ChatGPT**, based on GPT-3.5, gaining widespread attention for generating human-like text.
- From 2023 to present, major LLM advancements include Google's **Gemini**, Meta's **Llama 2 & 3**, Anthropic's **Claude**, and Amazon's **Nova**, pushing multimodality, open-source frameworks, and ethical AI.

イロト 不得 トイヨト イヨト 二日

Brief History of Neural Network

Perceptron 000000000

Modern Era: Generative AI 2021-Present

2010s-Present: Deep Learning Revolution

- In 2021, Diffusion models like Denoising Diffusion Probabilistic Models (DDPM) became prominent for generating high-quality images, challenging the dominance of GANs.
- In 2022, Stability AI released Stable Diffusion, allowing users to generate images from text prompts based on diffusion models.
- In 2024, OpenAl introduced **Sora**, a text-to-video model based on diffusion models that can generate about 1 minute of high-quality video from text prompts.

Applications of Deep Learning

- Computer Vision
- Natural Language Processing (NLP)
- Speech Recognition and Generation
- Biomedical Science and Healthcare
- Self-Driving Vehicles
- Recommendation Systems
- Finance and Fraud Detection
- Medical Imaging and Diagnostics
- Robotics and Automation
- Music Technology and Audio Processing
- Climate Science and Environmental Monitoring
- Biological Sciences and Bioinformatics

- Agricultural Technology
- Meteorology and Weather Prediction
- Cloud Computing and Data Centers
- Smart Manufacturing and Industry 4.0
- Logistics and Supply Chain Optimization
- Food Security and Sustainable Agriculture
- Cybersecurity and Threat Detection
- Software Engineering and DevOps
- Materials Science and Engineering
- Mechanical Engineering and System Design
- Digital Media, Filmmaking, and Animation
- User Interface and User Experience (UI/UX) Development

Multilayer Perceptrons

・ロト ・御 ト ・ ヨト ・ ヨト … ヨ 15/29

What	Deep	Learning?
000		

Biological Neuron

- Dendrite: Receives signals from other neurons
- Soma: Processes the information
- Axon: Transmits signals away from Soma
- Axon terminal: Send signals to other neurons

000	00000000	00000000	000000

- Each input x_i is multiplied by its corresponding weight w_i , *i.e.*, $w_i x_i$
- The weighted inputs are summed together (along with the bias b), *i.e.*, $z = \sum_{i=1}^{n} w_i x_i + b$
- The sum is passed through a step function to produce the estimated output, *i.e.*, $\phi(z)$

Mathematical Form of Perceptron

Mathematical Form of Perceptron:

$$\hat{y} = \phi\left(\sum_{i=1}^{n} w_i x_i + b\right)$$

• x_i are the input, w_i are the weights, b is the bias, \hat{y} is the prediction, ϕ is the step function:

$$\phi(z) = \begin{cases} 1, & \text{if } z \ge 0\\ 0, & \text{if } z < 0 \end{cases}$$

Perceptron Example

Consider

- Inputs: x_1 , $x_2 \in \{0,1\}$ are binary values
- Weights: $w_1 = 1, w_2 = 1$
- Bias: b = -1.5

The perceptron output is computed as:

$$\hat{y} = \phi(w_1x_1 + w_2x_2 + b) = \phi(1 \cdot x_1 + 1 \cdot x_2 - 1.5)$$

- Input: $x_1 = 0, x_2 = 0$; Output: $z = 1 \cdot 0 + 1 \cdot 0 1.5 = -1.5 \Rightarrow \hat{y} = \phi(z) = 0.$
- Input: $x_1 = 0, x_2 = 1$; Output: $z = 1 \cdot 0 + 1 \cdot 1 1.5 = -0.5 \Rightarrow \hat{y} = \phi(z) = 0.$
- Input: $x_1 = 1, x_2 = 0$; Output: $z = 1 \cdot 1 + 1 \cdot 0 1.5 = -0.5 \Rightarrow \hat{y} = \phi(z) = 0.$
- Input: $x_1 = 1, x_2 = 1$; Output: $z = 1 \cdot 1 + 1 \cdot 1 1.5 = 0.5 \Rightarrow \hat{y} = \phi(z) = 1$.

Conclusion

The perceptron correctly implements the AND operator.

What is Deep Learning?	Brief History of Neural Networks	Perceptron	Multilayer Perceptrons
000	00000000	000000000	

Matrix-Vector Representation of Perceptron

$$\hat{y} = \phi\left(\sum_{i=1}^{n} x_i w_i + b\right)$$

• Define vectors
$${m x}$$
, ${m w} \in \mathbb{R}^n$:

• The perceptron can be defined in vector form:

$$\hat{y} = \phi(\boldsymbol{w}^{\top}\boldsymbol{x} + b),$$

where the inner or dot product of \boldsymbol{w} and \boldsymbol{x} is given by

$$oldsymbol{w}^{ op}oldsymbol{x} = \sum_{i=1}^n w_i x_i$$

What	Deep	Learning?
000		

Using Perceptrons to Implement Logical Operators

Logical operators such as AND (\land), OR (\lor), and NOT (\neg):

- \wedge : the result is true if both x_1 and x_2 are
- \lor : the result is true if either x_1 and x_2 is
- $\bullet \ \neg:$ the result is true if the input is not

x_1	x_2	$x_1 \wedge x_2$	$x_1 \lor x_2$	$\neg x_1$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Table: Boolean table illustrating \land , \lor , and \neg operations with x_1 and x_2

Perceptron can be used to implement them:

$$\hat{y} = \phi(\boldsymbol{w}^{\top}\boldsymbol{x} + b) = \phi(w_1x_1 + w_2x_2 + b)$$

- \wedge : w = [1, 1] and b = -1.5• \vee : w = [1, 1] and b - 0.5
- \neg : w = -1 and b = 0.5

Limitations of Perceptron

The perceptron cannot solve **nonlinear** problems such as the logical operator XOR (\oplus) :

• \oplus : the result is true if x_1 and x_2 are different

x_1	x_2	$x_1 \wedge x_2$	$x_1 \lor x_2$	$\neg x_1$	$x_1 \oplus x_2$
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	0	1
1	1	1	1	0	0

Table: Boolean table illustrating \land , \lor , and \oplus operations with x_1 and x_2

The perceptron can only solve linearly separable data:

Summary of Perceptron

The perceptron is defined as:

$$\hat{y} = \phi(\boldsymbol{w}^\top \boldsymbol{x} + b),$$

- Mathematical Model: It computes the weighted sum of the inputs along with the bias term
- Activation: The perceptron (or neuron) is activated by the step (activation) function if the weighted sum exceeds a certain threshold.
- Linear Separability: The perceptron can classify linearly separable data, e.g., \land , \lor , and \neg .
- Limitation: It cannot solve nonlinear problems, e.g., \oplus .

Brief History of Neural Networks

Perceptron 000000000 Multilayer Perceptrons

Why Multilayer Perceptrons (MLP)?

Recap: A single perceptron can implement AND, OR, and NOT, but **not** XOR **However**, XOR can be implemented by **multiple** percetrons.

• **NAND** \uparrow : the result is false if both inputs are true

x_1	x_2	$x_1 \wedge x_2$	$x_1 \uparrow x_2$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

- A single perceptron can implement NAND with $oldsymbol{w} = [-1, -1]$, and b = 1.5
- We can express XOR in terms of AND, OR, and NAND as follows

$$x_1 \oplus x_2 = (x_1 \lor x_2) \land (x_1 \uparrow x_2).$$

This forms a 2-layer network:

Brief History of Neural Networks

Perceptron 000000000 Multilayer Perceptrons

MLP for XOR

The XOR function can be computed using MLP as follows:

• Define logical operators using single perceptrons:

$$h_i(\boldsymbol{x}) = \phi(\boldsymbol{w}_i^\top \boldsymbol{x} + b_i), \quad \forall i \in \{1, 2, 3\},$$

where the weight and biases are:

- **OR**: $w_1 = [1, 1], b_1 = -0.5$ **NAND**: $w_2 = [-1, -1], b_2 = 1.5$ **AND**: $w_3 = [1, 1], b_3 = -1.5$
- Define the activation vector $a \in \mathbb{R}^2$ as the intermediate results from the first layer:

$$oldsymbol{a} = egin{bmatrix} a_1 \ a_2 \end{bmatrix}$$

where $a_1 = h_1(x)$ from the OR output and $a_2 = h_2(x)$ from the NAND output.

• Compute the estimated output \hat{y} using the activation vector $m{a}$ from the first layer:

$$\hat{y} = h_3(\boldsymbol{a}) = \phi(\boldsymbol{w}_3^\top \boldsymbol{a} + b_3)$$

where h_3 represents the AND operation on the outputs of OR and NAND.

What is Deep Learning? 000	Brief History of Neural Networks	Perceptron 00000000	Multilayer Perceptrons
Structure of MLP			

For each hidden layer in a multi-layer perceptron:

- The input vector $x \in \mathbb{R}^d$ is obtained from the previous layer (or from the input data for the first layer).
- We define n perceptrons, each with independent weights $w_i \in \mathbb{R}^d$ and a bias $b_i \in \mathbb{R}$ for $i \in [n] := \{1, 2, ..., n\}$:

$$h_i(\boldsymbol{x}) = \phi(\boldsymbol{w}_i^\top \boldsymbol{x} + b_i)$$

where ϕ is the **activation function**.

• The computed outputs $h_i(x)$ are stacked into an activation vector $a \in \mathbb{R}^n$, representing the output of this layer:

$$oldsymbol{a} = egin{bmatrix} a_1 \ a_2 \ dots \ a_n \end{bmatrix}$$

where $a_i = h_i(\boldsymbol{x})$ for each *i*.

Perceptron

Matrix-Vector Representation of MLP

To rewrite the MLP in matrix-vector form for each layer ℓ :

• Define the weight matrix $W \in \mathbb{R}^{n \times d}$ and the bias vector $b \in \mathbb{R}^n$:

$$oldsymbol{W} = egin{bmatrix} oldsymbol{w}_1^\top \ dots \ oldsymbol{w}_n^\top \end{bmatrix}, \quad oldsymbol{b} = egin{bmatrix} b_1 \ dots \ oldsymbol{b}_n \end{bmatrix}$$

where each $w_i \in \mathbb{R}^d$ and b_i represents the weights and bias for the *i*-th perceptron.

• Define the **pre-activation vector** $\boldsymbol{z} \in \mathbb{R}^n$ as:

$$oldsymbol{z} = oldsymbol{W} oldsymbol{x} + oldsymbol{b} = \begin{bmatrix} oldsymbol{w}_1^{ op} oldsymbol{x} + b_1 \end{bmatrix} \ oldsymbol{v}_n^{ op} oldsymbol{x} + b_n \end{bmatrix}$$

This combines the weighted sum of the inputs from the previous layer.

• Apply the activation function ϕ element-wise to z to obtain the activation vector $a \in \mathbb{R}^n$:

$$oldsymbol{a} = \phi(oldsymbol{z}) = egin{bmatrix} \phi(oldsymbol{w}_1^ op oldsymbol{x} + b_1) \ dots \ oldsymbol{\omega} \ oldsymbol{\omega} \ \phi(oldsymbol{w}_n^ op oldsymbol{x} + b_n) \end{bmatrix}$$

where ϕ is applied to each element of the pre-activation vector z.

28/29

・ロト ・ 日 ト ・ 日 ト ・ 日

What is Deep Learning? 000	Brief History of Neural Networks	Perceptron 00000000	Multilayer Perceptrons

Summary of MLP

An MLP with L layers can be defined in a recurrent manner: for each layer $\ell \in [L]$,

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} + oldsymbol{b}^\ell, \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

where $m{x}^\ell = m{a}^\ell$ serves as the input to the next layer, and the initial input is $m{x}^0 = m{x}.$

- The MLP is also called a **feed-forward network** because the data flows from the input layer to the output layer through hidden layers without any feedback loops.
- **②** Each hidden layer consists of n_{ℓ} perceptrons (or neurons), where n_{ℓ} is referred to as the width of the network at layer ℓ .
- **③** The total number of layers *L* defines the **depth** of the network.
- The final estimated output $\hat{y} = x^L$ can have **multiple dimensions**, depending on the task (e.g., classification or regression).
- **(3)** The **width** and **depth** are hyperparameters chosen by the network designer.
- An MLP is capable of solving **nonlinear problems** that a single perceptron cannot handle.

Question

How do we effectively select the weights W^ℓ and biases b^ℓ ?