Generalizaiton and Regularizaiton

Tianxiang (Adam) Gao

School of Computing
DePaul University

Outline

@ Statistical Learning Theory

© Regularization

e Hyperparameter Tune

© Overparameterization

2/45

9000000000000 00

Recap: Optimization in Neural Networks

Training Process:
o MLP are parameterized function fs, where 8 = {W* b‘}

@ The training process involves solving an optimization problem with respect to 6:
o £6) = 23 tlfo(w) v
meln - n — 0\L;),Yq

where £ is a loss function and S := {x;, y;}_; is a training set.

@ One commonly used method is called gradient descent:
0" =6 —-nvL(d)
where 1 > 0 is a learning rate.
Convergence Issues:
Small 7 leads to slow convergence while large 7 cause oscillations or divergence.

DNN loss landscapes are highly complex, exhibiting large and varying condition numbers s

Ill-conditioned loss landscapes cause zig-zag patterns in gradient descent.

Unstable information propagation in DNNs can result in vanishing or exploding gradients.

3/45

O@0000000000000

Recap: Advanced Optimizers

Improving Optimizations:
@ Averaging gradients (or with momentum) helps smooth the descent direction.
@ A larger 7 is used in GD with momentum, but training also exhibits damping effects in the loss.

@ Adaptive methods like RMSProp rescale gradients to maintain consistent update magnitudes.

Adaptive optimizers provide an adaptive learning rate for each gradient coordinate.

SGD with mini-batch improves computational efficiency by using small data subsets.

What are common activation functions beyond sigmoid and ReLU?

How should | choose learning rate, width, and depth for my network?

Does gradient descent always converge? How can | speed up training?

Does good training performance guarantee good test performance?

4/45

00@000000000000

Outline

@ Statistical Learning Theory

5/45

000@00000000000

Gaussian Mixture Model

@ Assume the output y follows a discrete uniform distribution over {0, 1}, meaning y ~ U{0, 1}.
@ For each value of y, the input x follows a Gaussian distribution:

o When y =0, z follows z|y =0 NN(/Ll,O‘%), eg,pur=1lando; =1

o When y =1, z follows z|y =1 NN(#z,Ug), e.g., p2 =2 and op =2

Gaussian Mixture Model

040 —— Classy =0
035 Classy =1
0.30
0.25
>
=
0
c 0.20
[
D 0.15
0.10
0.05 \
0.00
6 A - o 2 . s
X

@ This setup defines a (binary) Gaussian Mixture Model (GMM).

@ Both z and y are random variables, with a joint distribution denoted as D, i.e., (z,y) ~ D.
6/45

0000@0000000000

Statistical Learning Theory (SLT)

o Assume the data (z,y) is drawn from an underlying joint distribution D, i.e., (z,y) ~ D.

@ The goal of learning is to find a (parameterized) function f such that:

flx) =y
for "most” (x,y) pairs in a probabilistic sense.

@ The expected risk of f is defined as:

R(f) = E(x,y)wD[f(‘r) - y]27

where we use the squared loss to measure the difference between f(z) and y.
@ In practice, the distribution D is unknown.

@ Instead, we collect a random training sample S := {(x;,y;)}i=; and compute the empirical risk
or training error:

o By the law of large numbers, we have:
Rs(f) — R(f) as n — oo.

7/45

Example of Expected and Empirical Risk using GMM

Suppose (z,y) follows GMM, and the function f(z) = Oz, i.e., parameterized linear function.
@ The expected risk R(f) is given by

R(f) =E(, u)~D4(f(z),y)
/ [f(z p(z,y)ddy = / [f(z) = y)* plaly)p(y)dzdy

/ @ plaly = 0)do + 5 [1)~ 11 plaly = 1o

=5 /[096] N (z; pl,af)d:er%/[O:rf 112 - N(x; p2, 01)dx
=R(0),

where p(z,y) is the joint density, and N (x; u, 0?) is the Gaussian density defined by

1 N2 2
N(z;p,0%) = ——e (T71)7 /207
(5 p,07) —

o The empirical risk Rg(f) over a training sample is given by

n

Rs(f) = %Z[Gm —yi)* £ Rs(9).

i=1

8/45

000000e00000000

Hypothesis Class

In practice, we cannot evaluate all possible functions f. Instead, we restrict our search to a family of
functions called a hypothesis class . Each function h € H is called a hypothesis.

/ Jr

The collection of all linear models or the collection of all two-layer neural networks:

Hi={h:h(x)=w'x}, Ho = {h: h(x) = v ¢(Wx)}.

A learning algorithm aims to find the best hypothesis h € H that minimizes the expected risk:

fr = argmin R(f).
feH

The difference || f* — fx|| is called the approximation error, where f* is the ground true function.
@ The Universal Approximation Theorem (UAT) implies || f* — fu| =~ 0 if H = Ho.

9/45

000000000000 00

Decomposition of Expected Risk

@ Given a learned hypothesis fs from a sample S, the expected risk of fs can be decomposed as:
R(fs)= Rs(fs) +[R(fs)— Rs(fs)]-
—— —_—
Training Error Generalization Error

@ The generalization error is the difference between the expected risk and the empirical risk.

@ In practice, the generalization error is estimated using the test error on an independent test set.

10/45

0000000 0e000000
Bounding the Generalization Error

@ The generalization error can be upper bounded by the complexity of the hypothesis class:

sup |R(h) — Rs(h)| < Complexity Term,
heH

where the “Complexity Term” quantifies how flexible or complex the hypothesis class H is.

@ One commonly used complexity measure is the (empirical) Rademacher complexity:

Rs(M) = Eo,nug-1.1 {hmei% % Zg(h(xi)v Uz’)} ;
=1

where £(h(z),0) = oh(z) and o; € {—1,1} are i.i.d. Rademacher random variables (uniformly
distributed), i.e., o ~ U{—1,1}, and the expectation is taken over these random labels.

o Takeaway: Rademacher complexity measures the ability of the hypothesis class to fit random
noise (i.e., how well the hypothesis class can fit random labels).

@ Using model complexity, we can derive the following generalization bound:
R(fs) < Rs(fs) +Rs(H) + O(n™?),

where the expected risk is upper-bounded by the training error and the complexity of the model.

11/45

000000000 e00000
Example: Complexity of Linear Models

Let S C {x : ||z|| < R} be a random sample, and consider 1 := {h: h(z) = w' @, ||lw| < A}.
@ The (empirical) Rademacher complexity Rs(H1) is given by

_ 1 ool — R
SRS(’Hl) 7E0‘i hnelg& n ;é(h(l’z):oﬁ)] = Em‘, |:|11‘I]1|H<1)\ n 2 o;w '-137,:|
" n 241/2
A A
<EE”1 ;am < pos |:]Eo'i ;aiwi }
2A2
Sé nR? = ReA ,
n n

where we use the Cauchy-Schwartz and Jensen's inequalities.

@ As a result, the generalization error for linear models satisfies (with high probability):

2 A2 -
RZA +O0(n™h).

R(hs) < Rs(hs) + -

@ More data improves the empirical risk Rs as an approximation of the expected risk R, reducing
overfitting, but overall performance still depends on minimizing Rs.

12/45

Model Complexity Trade-Off

The expected risk R(fs) is upper-bounded by the training error and the model complexity:

R(fs) < Rs(fs) +Rs(H) +O(n™).

under-fitting . over-fitting

. Test risk

Key Insights on Generalization Bound

o If the model is too simple, it may fail to fit the training
data well. This is known as underfitting.

o Conversely, if the model is highly flexible, it may achieve
low training error, but perform poorly on unseen data.
This is known as overfitting,.

~N

~ ‘Training risk
sweet Spot\:- - - _ @ The goal is to find a “sweet spot” balancing underfitting
PR and overfitting to minimize the overall expected risk.

Capacity of H

13/45

00000000000 e000

Optimal Hypothesis f*
Claim: f*(z) = E[y|z] is the optimal hypothesis that minimizes the expected risk.

For any function f, we can decompose the expected risk as follows:
R(f) =E(f —9)* =E(f — f* + " —y)*
=E(f - f*)* + 2E(f - f)(f" —y) +E(f" —y)
=E(f - f*)* +E(f" —v)°
>E(f" —y)*
=R(f7)
where the cross term E(f — f*)(f* — y) = 0, because f*(z) = E[y|z]. D)

o This is another existence result.
@ The optimal hypothesis f* is not directly accessible unless we know the joint distribution D.

@ Generally, we may have R(f*) # 0. For example, consider y = 6z + ¢, where £ ~ N(0,c?)

f(z) =Ely|z] = E[fx + ¢|z] = 0x
R(f") =E[f"(z) — y]2 =E.[0z — (0= + 5)]2 =02 = irreducible error.

14/45

000000000000 e00
Bias-Variance Decomposition of Expected Risk

@ The learned function fs depends on the random sample S, making fs a random variable.

Hence, the expected risk R(fs) is also random, and it varies across different random samples S.

@ To capture this variability, we consider the expectation of the R(fs) over all possible samples S,
i.e., Es[R(fs)]
Let f := Eg[fs], the expected or average hypothesis over all random samples S.

Using f, we can decompose Es[R(fs)] as follows:
Es[R(f5)] =EsE (s)~ (fs(x) — y)*
=EsEn|fs — f)]’ + R(f")
=EsEp[fs — f+ [= 1" + R(f")
=EsEp|(fs —)’ + (F = /)] + R
=Es(fs — /)’ +En(f — f*)* + R(f")
N——

Variance term Bias term irreducible

where the cross term Es p(fs — Es[fs])(Es(fs) — f*) = 0 cancels out.

15/45

0000000000000 e0

Bias-Variance Trade-Off

The expected risk Es[R(fs)] can be broken down into three parts:

o Squared Bias: Ep[(f* — f)?] measures the error from approximating the optimal function f*
with the learned model fg. It reflects the error caused by using a simple model that cannot
capture all the data patterns.

e Variance: Var(fs) = Es[(fs — f)?] measures how much the learned function fs varies with
different training samples. It represents the error due to the model's sensitivity to fluctuations in
the random training sample S.

o Irreducible Error: R(f") represents the inherent noise in the data, which no model can eliminate.
It is the error we cannot reduce.

Bias-Variance Trade-off

e High bias, low variance: Simple models (e.g., linear
models) have low variance since they are less sensitive to
training data, but have high bias because they are too
simple to capture all patterns in the data.

s
v ~ -~ —-=-- Bias"2 H H H .
\\\ e i o Low b|a§, high variance: Con?plex models (e.g.,
ol LT —— Total Error polynomial model) have low bias as they can model

Irreducible

complex relations, but high variance due to overfitting to
the training data.

Model Complexity
16/45

Summary of Statistical Learning Theo

@ The goal is to find a hypothesis f within a hypothesis class H that minimizes the expected risk:

R(f) = E(ac,y)~D [(f(.l‘) - y)2] .

Since the underlying distribution D is unknown, we approximate f by minimizing the empirical
risk based on a random training sample S:

n

> (flws) — i)™

=1

1
n

Rs(f) =

Using model complexity PRs(H), the expected risk is upper bound as:

R(fs) < Rs(fs) +Rs(H) +O(n™),

By considering variations across different random training samples S, the expected risk Es[R(fs)]
can be decomposed into three components: bias, variance, and irreducible error:

o High bias, low variance: Simple models underfit and miss important patterns in the data.

o Low bias, high variance: Complex models overfit and perform poorly on unseen data.

Find the “sweet spot” between underfitting and overfitting to minimize the overall expected risk.

17/45

9000000000000 0

Outline

© Regularization

18/45

O®000000000000

DNNs Can Fit Random Labels and Random Data

2.5 T T

true labels @ Label corruption: Replace true label with
2.0 random labels | random label

shuffled pixels o Shuffled pixels: The pixels of each image are

rearranged using a fixed random permutation

=
wn

random pixels
+—& gaussian e Random pixels: Each image has a unique
. random arrangement of pixels).

average_loss
=
(=]

o Gaussian: The pixels in images are replaced
. with random Gaussian noise.

o
w

o Average loss: Training error using the
cross-entropy loss

o
(=]

15 20 25
thousand steps

Key Observation

DNNs can perfectly fit random labels or data, achieving zero training error even on completely
unstructured inputs.

Zhang et al. “Understanding deep learning requires rethinking generalization” ICLR 2017.
19/45

00@00000000000
Outline

Weight Decay

20/45

Weight Decay

@ Regularization typically involves adding an extra term, called the regularizer, to the training loss:
Aoz
£(8) = £(8) + 51011,

where A > 0 is the regularization hyperparameter, and || - || is the Euclidean norm.

@ In deep learning, this regularization is known as weight decay because gradient descent on the
regularized loss automatically shrinks (or decays) parameter @ by the factor (1 — nA):

0" =0 —nVeLlr(0) =0 —1[VeL(0)+ \O]
= (1—nX) 6—nVeL(0).
N —

decaying weights

@ However, 6 does not shrink to zero, as it must maintain a certain value to minimize the cost £(8).

21/45

Interpretation: Sparsity

@ The regularized optimization can be reformulated as:
mein L£(6), s.t. 0] <C,
where C\ > 0 is a constant that depends on \.

@ In deep learning, O is called sparse if most parameters are zero or close to zero (i.e., 8; ~ 0).

@ Sparse 6 reduces the flexibility and complexity of the DNN, leading to a simpler model.

22/45

O0000@00000000

Interpretation: Linearity

Consider a simple two-layer neural network:
n
fo(x) = vid(wiz),
i=1

where z € R is a scalar and ¢(-) is tanh.

@ When w; = 0, then w;x =~ 0, and the network operates near the
linear region of tanh:

vip(wiz) = vi(wiz) = (viw;)r =u;xz = a linear model,

where u; 1= v;w;.

o If v; = 0, then

vid(w;z) = 0,

indicating fewer neurons are used.

23/45

[e]e]e]elele] lelelelelelele)
Outline

Dropout

24/45

000000 0e000000
Dropout Regularization

Recall the forward propagation:
zé _ Wiw5717 w[_ QS(ZE).

@ During training, each neuron is randomly dropped with probability p (a hyperparameter):
2L — W (’rl o mz—1) 7 2l = ¢(Zl)7

iid. .) .
where ¢ "% Bernoulli(p) and © is element-wise product.

@ The gradient update applies only to a thinned subbnet of the network.
@ At test time, dropout is turned off, and weights are scaled by p to respect the dropout probability:

¢ 0 0—1
z =pW x .

25/45

00000000 e00000

Interpretation: Implicit Ensemble Learning

@ By randomly dropping units, a different thinned subnet is trained at each gradient descent step.
@ With n neurons in the full network,

@ At test time, the output is an ensemble prediction, aggregating the contributions of all subnets.

Dropout ensures that no single neuron or small group of neurons can dominate the prediction. By
spreading the responsibility across all units, it improves model robustness to the input change and
prevents overfitting.

26/45

000000000 e0000
Outline

Stochastic Weight Averaging

27/45

0000000000 e000

Trajectories of SGD

Let us continue to run SGD from a well-trained model and visualize the trajectory

Train loss Test error (%)
50
50
X x ‘ I
i i 37.03
1\ I +
P e °
» 05062 % b 30.04
)
4, 03324 2628
of
10 B 0.2522 10 24.26
o ‘o
o Y. 02152 o7 S a 2317
-~ S » £
£
0 x x I 0.1981 0 x x 258
k 4 0.1835 k ‘ I 219

0 10 20 30 40 50 0 10 20 30 40 50

@ SGD oscillates around the periphery of high-performing solutions, and averaging SGD iterates
improves test performance.

@ SGD trajectories resemble a high-dimensional Gaussian-like distribution, with most of the mass
concentrated in a thin shell.

28/45

Averaging Weights for Better Performance

Low-precision SGD Compute Weight Average

o Averaging SGD iterations leads to improved generalization:

K
i

D w

=1

Bl

w =

29/45

Averaging Weights for Better Performance

o Averaging weights approximates ensembling predictions via linearization (if the weights are close):
1 : 1en
£~ (13 - o)
i=1 i=1
@ Moving average formulation:
w' ! = w” — v L(w")
wilh' = (1= Y wha + B w™

where g% = kLH or ¥ =B €(0,1).

30/45

0000000000000 e

Summary

@ DNNs can fit random labels and data, achieving zero training error.

Weight decay controls large weights, promoting sparsity, linearity, and stability.

During training, dropout randomly drops units, effectively training an exponential number of
thinned subnets simultaneously.

@ At test time, the output is an ensemble prediction, aggregating contributions from all subnets.

SGD oscillates near the boundary of local minima, while SWA finds a centralized solution in a
flatter region.

@ SWA approximates ensemble predictions through linearization.

31/45

9000000000

Outline

e Hyperparameter Tune

32/45

Recap: Hyperparameters in Neural Networks

The training process involves several key hyperparameters:
@ Loss Function £(-,-): Square loss, cross-entropy loss, hinge loss
@ Activation Function ¢(-): Step, sigmoid, ReLU, tanh, GELU
Optimizer: SGD, Momentum, RMSProp, Adam, AdamW
Learning Rate (7), Batch Size (b), Epochs
Network Type: MLPs, CNNs, RNNs, Transformers, GNNs
Width and Depth

Layers: Normalization, pooling, dropout, softmax

o Otherwise: Initialization (Xavier, He), £2-regularization, gradient clipping, early stop

Key Difference: Hyperparameters vs. Trainable Parameters

o Hyperparameters are not trainable. Unlike weights and biases, they need to be tuned.

@ Proper tuning is essential for faster convergence during training and achieving good
generalization performance.

33/45

00@0000000

Validation Set

Split the dataset into three parts: training set, validation set, and test set.

Build the model using the training set.

Optimize or tune hyperparameters on the validation set.

After tuning, evaluate the final model on the test set.
Suggested split ratios:

o For datasets between 100 and 1,000,000 samples: 60/20/20.
o For datasets larger than 1,000,000 samples: 98/1/1.

@ Ensure the validation and test sets come from the same distribution.

o Example: Training and validation images from the web, but test images from user cell phones can
cause a mismatch.

34/45

000@000000

Tuning Process: Grid and Random Search

1.0 ~ ~ ~ . 1.0 x
X X
058 038 X X
X X X > X
X
~ ~
o6 206
£ £ x X
g X X X > g
a o X
304 S04 x 2
> >
T T
X X X > X X § X
0.2 0.2 %
x X X X
X X
o %.0 0.2 0.4 0.6 0.8 1.0 0'%.0 0.2 0.4 0.6 0.8 1.0
Hyperparameter 1 Hyperparameter 1

@ Grid Search: Systematically explores a predefined set of hyperparameters; comprehensive but
expensive

o Random Search: Randomly sample hyperparameters; more efficient than grid search when some
hyperparameters are less important.

35/45

0000e00000

Tuning Process: Coarse and Refine

1.0
X Coarse
X X Refined
0.8 X X x
X
X XX X
X X %
o X % "Xx x
806 % XXX
2 X,
X
5 XX %X x o
3 X X
5 X
S04 X X X % X
T X
X X
0.2
%90 0.2 0.4 0.6 0.8 1.0

Hyperparameter 1

@ Start with coarse tuning, then refine gradually.

36/45

0O0000e0000

Tuning Process: Log Scale

10 10

9 9
g g
s 5
o 8 > 8
2 2
€ £
I I
= =

7 7

6 6

0.2 0.4 0.6 0.8 1.0 107° 10 1072 1072 1071 10°
Leamning Rate (linear scale) Learning Rate (log scale)

o Use log scale for hyperparameter search when appropriate, e.g., learning rate n and smoothing
factors 3

o Hyperband/Successive Halving: Dynamically allocate resources and discard poor configurations
early, ideal for deep networks with long training times.

@ Leverage parallelization to run multiple experiments simultaneously to accelerate the search.

37/45

000000 e@000

Input Normalization

@ Normalize the inputs using training set:

1« 1o

N:ﬁzﬂ% T =X — W, UQZE . z;, @ =ai/o,
i=1 =1
where all operations are taken element-wise.
o Consider a binary classification problem using linear model: fo(z) = wiz1 + waxe
e if z1 = O (100) and z2 = O (1), to have output fg = O (1), we must have w; = O (ﬁ) and
wa = O (1).
o After normalization, Z; = O (1) and Z2 = O (1), so we have w1 = O (1) and w2 = O (1).

3 3
2 ’ /

|
|
|
°
w
|
|
|
°
w

w1 wi
o At test time, apply i and o from training to test set.

38/45

0000000800
Learning Rate Decay

@ Recall that an epoch & is one pass through all mini-batches in SGD

@ Instead of using a fixed learning rate, one can consider using learning rate decay

n n

= — = — = . k
=g W= (0.95)"n

39/45

Bag of Tips

Learning Rate 7:
o Log-scale search: 107° ~ 1071,
@ Learning rate schedules: Linearly warm up, then decay periodically for smooth convergence.
@ Early stopping: Monitor loss curves to detect divergence.

Batch Size b:
o Small batches (e.g., 16 ~ 128) generalize better, but noisy gradient.
o Large batches (e.g., 256 ~ 4096) converge faster but may require higher learning rates.
@ Rule of Thumb: Use the largest batch size that fits in memory, then tune; n' =7 x %/.

Weight Decay:
o Log-scale search: 1075 ~ 1073,
o For Adam: Use AdamW instead of standard weight decay.

w—w-—1n —N\w = w+w-—71n - \w

v v
Vs +e Vs+e

where weight decay is scaled by the small in Adam, reducing the regularization effect.
o If validation loss diverges while training loss improves, increase weight decay.

Dropout:
@ Start with 0.2 ~ 0.5 for input layers, 0.5 ~ 0.8 for hidden layers.
@ Combine dropout with £2-regularization but avoid using it with Batch normalization.

40/45

000000000 e

Optimizers:
o SGD+Momentum: More stable than vanilla SGD.
@ Adam works well for most tasks with default values 51 = 0.9 and 2 = 0.999
@ Use AdamW for better weight decay handling.
@ RMSProp: Useful for RNNs and reinforcement learning.

Network Architecture (Depth and Width):
@ Start simple and gradually increase the complexity
@ More layers (depth) improve feature extraction, using skip connections if too deep

o More neurons (width) increase capacity and stabilize training

Activation Functions:
@ RelLU: Standard choice for DNNs.
Leaky ReLU: Fixes dying ReLU problem (« = 0.01).
GELU: Used in Transformers.
Swish: Works well in CNNs.

(4]

[

41/45

Outline

© Overparameterization

42/45

Ooe00
Overparameterization

@ A deep neural network (DNN) is said to be overparameterized when the number of neurons or
parameters is much larger than the number of training samples.

@ This might seem counterintuitive, but it has been found to be surprisingly beneficial in practice.

ResNet18 two layer ReLU net
0.15 57 0.6 5o, e
L 0.20 T c0af\
S F > o |
o 1 1 HHe6=x o !
0.05 —+— training error 0.21 —+— training error
‘ test error test error
0.00 - s s . s s 0.0 A T
106 108 >3 57 511 515
#param #hidden units

Behnam, et al. “Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks,” ICLR 2019:
43/45

Double Descent

Overparameterized neural networks can perfectly fit or interpolate the training data.

@ Mathematically, there exists a set of parameters 8 such that
fo(zi) =yi, Vi€ [n] (1)

o Overparameterization implies there are infinitely many interpolation solutions.

@ Some interpolation solutions generalize much better than those in the underparameterized regime.
This phenomenon is called double descent.

under-parameterized

Test risk

“classical”
regime

over-parameterized

“modern”
interpolating regime

~ Training risk:
~

Capacity of H

. _interpolation threshold
“~

44/45

Implicit Regularization
@ It is important to understand that different global minima lead to varying test performances.

o A flat minimum typically results in better generalization than a sharp minimum.
o Different optimizers may converge to different minima, each with different generalization

outcomes. This is known as implicit regularization.
@ Thus, even if your current optimizer achieves low training error, tuning or adjusting it may still be

necessary to achieve better test performance.

Training Function

.
¢ Testing Function

Sharp Minimum

Flat Minimum
45/45

	Statistical Learning Theory
	Regularization
	Hyperparameter Tune
	Overparameterization

