Neural Network Training

Tianxiang (Adam) Gao

School of Computing
DePaul University

1/42

Outline

@ Universal Approximation Theorem

© Review of Derivatives

© Optimization and Gradient Descent

e Backpropogation

2/42

Recap: Definition of MLPs

INPUT

VALUES WEIGHTS

STEP
\\\\f:MMAﬂON FUNCTION
X > W, > E > I » OUTPUT

x3 > W3

x1—> Wl

An MLP with L layers computes an output § = 2, where each layer £ € [L] is defined recursively as:
2= Wi b,
' = ¢(z"),

where the initial input is ° = = and ¢(-) is an activation function.

MLPs can solve nonlinear problems like XOR that a single perceptron cannot handle.

3/42

@00

Outline

@ Universal Approximation Theorem

4/42

oeo

Universal Approximation Theorem

@ A MLP can be expressed as a parameterized function f(x;0) or fo(x), where 0 is the collection
of all weights {W;}, and biases {b;},.

o We assume the existence of a true function f*(x) : & — y maps the input @ to the target y.

@ The goal of the parameterized function fg is to approximate f* by finding optimal values for 6.

Universal Approximation Theorem (UAT): MLPs fo can approximate “any” function f* with
arbitrarily small errors, given sufficient parameters (or neurons).

UAT: Max Error=1.09, Units=10 UAT: Max Error=0.27, Units=50

e AN —— Function w /
S MLP o AT
/"\‘\// 05

—— Function
MLP

:

: r—
7 / s
Dva n‘e)vn

5/42

UAT: Max Error=1.09, Units=10 UAT: Max Error=0.27, Units=50

0 —— Function e / \ —— Function
a4

N MLP] AT MLP

. L
o5 = 2 05 <

00 02 04

Universal Approximation Theorem (UAT):

@ Theorem: MLPs fg can approximate “any” function f* with arbitrarily small errors, given
sufficient parameters (or neurons).

@ The UAT holds because “any” function on a compact set can be approximated by many simple
local pieces, and neural networks with nonlinear ¢ can construct these pieces and smoothly
combine them to approximate complex functions.

o Existence: the UAT implies the existence of suitable parameter values.

Key Question

How can we find the appropriate values of @ in practice?

6/42

90000000000

Outline

© Review of Derivatives

7/42

0Oe000000000
Definition of Derivative

Definition: Given a real-valued function f(x), the derivative of f measures how the output of the
function changes with respect to (w.r.t.) changes in the input z.

o If the input changes from a to x, the change in x is
Ar =z —a.
o Consequently, the change in the output is Ay := f(z) — f(a).
@ The derivative of f at a is the rate of change of f w.r.t. the
change of the input:

Py~ By _ 1@ =)

Here, the approximation error is small when z is close to a

Notation: We often denote the derivative of f at x as

P =9 gany drsa

where the approximation is exact in the limit as Az — 0.

James Stewart, “Calculus.”
8/42

00®@00000000
Properties of Derivatives

Here are some fundamental properties of derivatives:

o Linearity: The derivative of a linear combination of two functions h(z) = af(x) + bg(x) is:
W (z) = af' () + by'(x)
@ Product Rule: The derivative of the product of two functions h(x) = f(z)g(z) is:
h(z) = f'(x)g(x) + f(2)g' ()
@ Quotient Rule: The derivative of the quotient of two functions h(z) = % (where g(z) # 0) is:

. P @) - fa)d @)
hie) = o(@)

@ Chain Rule: The derivative of a composition of two functions h(z) = g(f(x)) is:

9/42

000e0000000
Linear Approximation

A curve of f(x) lies very close to the line segment between the points on the graph. By zooming in
toward the point a, the graph looks more and more like its straight line.

y
@ Rewriting the “definition” formula of the derivative, we have:

f@@)~ f(a) + f'(a) - (x — a) == L(x)

Here, L(z) is a linear function in = and it is called the linear
approximation of f at a.

The approximation error decreases as x gets closer to a.

The function L(z) is the tangent line to f(z) at z = a.

10/42

[e]e]e]e] lolelelelele)
Multivariate Function and Partial Derivatives

Consider a multivariate function f(z,y), where changes in the input can come from either z or y.

o If we fix y and only vary x, we compute the partial derivative of f w.r.t. x:

~ =

ox Az Az

Here, A, f denotes the change in f caused only by changes in x.

o Similarly, if we fix and only vary y, we compute the partial derivative of f w.r.t. y:

oy Ay Ay

Here, A, f denotes the change in f caused only by changes in y.

Note: Partial derivatives measure how f(x,y) changes w.r.t. one variable while keeping the other
variable constant.

11/42

00000 e00000
Tangent Plane as a Linear Approximation

(@a+Ax,b+ Ay,/f(a+ Ax,b+ Ay))

surface z = f(x, y)
\

(@. b, f(a, b))

tangent plane

Similar to a single-variable function f(z), a function f(x,y) has a linear approximation given by:
~ of _a s B
flew) ~ flab) + Gh@b) - @ = a)+ @) - =) = L)

Here, L(z,y) represents the tangent plane to the surface f(z,y) at the point (a,b, f(a,b)).

12/42

0O00000e0000
Gradient Vector

Consider a multivariate function f(x) = f(z1,...,%xs), where x € R"™.

o Gradient: The gradient of f(x) is a vector of partial derivatives, defined as:

-
Vi@ = [o)
o Linear Approximation: The output change Af can be approximated by:
Af%ﬁ-Axl—l— —l—ﬁ Az, = Vf(z)- Az,
f)ﬂ?l f)

where the approximation becomes exact if Ax — 0.
@ Vector Field: The gradient Vf is a vector field that comprises both magnitude and direction,

where the magnitude is the Euclidean norm defined by ||a|| = /Y[, a?.
Qe
s
wed Head
7
Zon
oivec®

T

13/42

0000000 e000

Steepest Descent Direction

Descent Direction
The gradient direction is the steepest ascent direction for the function f. Hence, the negative

gradient is the steepest descent direction.

@ From the linear approximation, we have
Af= V(@) Aw = [[Vf(2)| - [[Az| - cosa

where « is the angle between V f(x) and Az.

cos(a)

-180 -90 0 % 180

a

@ The steepest ascent in Af is obtained when o =0, i.e.,, Az x Vf(x)
@ The steepest descent in Af is obtained when a =7, i.e., Ax x —V f(x).

14/42

00000000800

Summary

o The derivative f’ of a function f is the rate of change of the outputs w.r.t. to its input.
@ Linearity, product rule, quotient rule, chain rule, partial derivatives, gradient

@ The output change can be approximated by the inner product of V f and Az, i.e,
Af = Vf(x)- Ax.

o The negative gradient direction is the steepest descent direction.

15/42

00000000080
Discussion Questions

Compute the gradients of the following functions:

o @)= a—y)’

flx)y=1 {:v > 0}, i.e, the step function: f(z) =1 if z > 0, and f(z) = 0 otherwise
flz) = 1+e*" i.e., sigmoid function. Hint: use the chain rule by z := 1+ e 7.
f(x) = a"x, where a,z € R™. Hint: write the dot product as summation.

Instructions: Discuss these questions in small groups of 2-3 students.

16/42

O000000000e
Solutions to the Discussion Questions

Compute the derivatives of the following functions:

o flz)=3(@—y)? fll&) =2~y

o f(z)=1{z >0}, f'(z) =0 for all z, except x = 0 where f’(x) is not defined.
o f(x)= H% f’(m) = (1:677”2 = f(z)(1 - f(z))
o f(x) = a"x, the partial derivative is 5% = a;, and the gradient is V f(x) = a.

o(x) ¢'(x)

1o ————
—— Sigmoid
=== Step

—— Sigmoid
Step

0.8

1
1
1
1
1
0.6 1
04

02

0.0 g | 0.00 | s— e e e

-100 -75 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100

X

Zero Derivative

The step function’s derivative, ¢'(z), is zero (everywhere except at z = 0).

17/42

900000

Outline

© Optimization and Gradient Descent

18/42

O®0000

Introduction to Training Process

For a general machine learning (ML) model including MLPs fg, it is almost impossible to assign
parameter values manually. Instead, we rely on the process called training:

@ The training set is a collection of input-output pairs, i.e., {(xi, yi) }iz1

@ A ML model fg computes §; = fo(x;) as an estimate to y;. Our goal is to find 6 such that

9 2 yi, Vi€ |[n]:={1,2---,n},

To measure the divergence between ¢ and y, we use a loss function £(y, 3).

The objective function or total cost is the average of divergence among the training data:
£0) = 1S) = L3 olw v
gt et

@ The training process aims to iteratively update the parameters 0 to gradually reduce the cost L.

19/42

[e]e] lelele)
Loss Function

The choice of loss functions depends on the learning task:
o If the output y € R is real-valued, the learning problem is called regression
o If the output y € {0, 1} is binary value, it is called (binary) classification and y is called label.

@ Square loss: as a common loss function in a regression problem, defined

Cross-entropy loss: as a broadly used loss function in classification, defined

€5,y) = —(ylog g + (1 — y)log(1 -),

where log(-) is the log function, which can be taken with a natural base e or base 10.

Generally, our estimate g is not binary value but a positive number between 0 and 1, e.g., ¥ = 0.6:
o Ify=1, then £(g,y) = —[1 -1og 0.6 + (1 — 1) log(1 — 0.6)] = —1og 0.6 ~ 0.22,
o If y =0, then £(g,y) = —[0-1og 0.6 + (1 — 0) log(1 — 0.6)] = —log 0.4 ~ 0.40,

where we assume base 10.

20/42

Gradient Descent

Given an objective function £(0), the learning problem of finding 0 to best fit each y; by fo(x;) in the
training set is equivalent to solving the following optimization problem:

min £(0),

which can be interpreted as:
“Minimize the objective function L with respect to (w.r.t.) the variable 6.”

To solve this optimization problem, the gradient descent method iteratively updates 8 by moving in
steepest descent direct. For each iteration £k = 0,1,2,..., the update rule is:

0"t = 6" — veL(6"),
where:
e 0% € R? is the current value of the parameters, assuming 6 has p components.

0"+ € RP is the updated value.
0° € R? is the initial value chosen by the practitioner.

n > 0 is the learning rate, controlling the step size of each update.
Ve L(0) is the gradient of £ w.r.t. 8:

_Tac) 8L() ace)] T
VoL(0) = [86, 565 86, }

with each L£(0)/06; representing the partial derivative of £ w.r.t. 8; for all i € [p].

21/42

[eJelele] Joj

Gradient Descent Intuition

Gradient Descent:

0"t =0 —nvL(eh).

6)C
_VL(6)

0*

Learning rate 1 and initialization 8° are crucial to the performance of gradient descent.

22/42

O0000e

Summary of Gradient Descent

@ MLPs are parameterized functions fo(x), where 0 represents the weights and biases.
o Given a training set, our goal is to find the optimal @ that best fits the training samples.

@ The divergence between the estimate §; = fo(x;) and the true value y; is measured by the loss
function /.

@ The cost L is the average loss over the training samples.

o Finding the optimal 0 is equivalent to solving an optimization problem that minimizes the cost £
with respect to 6.

o The gradient descent method iteratively updates 8 to reduce the cost L.

23/42

9000000000000 000000

Outline

e Backpropogation

24/42

O®00000000000000000
Perceptron

Perceptron

25/42

00®0000000000000000
Gradient Computation for Perceptron

o Perceptron: Recall § = fo(x) with 8 = {w, b} is defined as follows:
z=w' x+b, a=¢(2), folx)=a.
o Given a training sample (z,y), with § = fo(x) = a, the loss is

La,y) = (Q—Qy)g _ (f9($)2—y)2 _ (a_Qy)z

o Using the chain rule, the derivative of loss £ w.r.t. to each parameter 6 is given by

ol(a,y) _ 0la,y) da

a0 Oa 09

Specifically, we have

Ol(a,y) _ 0la,y) Oa Oz Ol(a,y) _ 0l(a,y) Oa 0Oz

ow da 0z ow’ ob da 0z b’
where
May) - da_ 92, 0z
9a 0TV 5,00 Gp=m =l

Question: Have you seen any common terms involved in the computation?

26/42

000@000000000000000
Computational Graph in Percept

Denote df := 94(a,y)/00, where 0 represents any variable involved, e.g., a, z, w, and b.
@ Rewrite gradient computation using df notation:

d(ay) _ M(a,y) da 0z

0l(a,y) _ 0la,y) Oa Oz

ow da_ 0z ow’ o a0z db
N—— ~——
da da
dz dz
| — —_————
dw

db
@ Using this relation, compute the gradients of the perceptron in a backward order
da=a—y, dz = da - ¢'(2),

dw=dz - x, db=dz
o Computational graph:

z a
2
——————— z=w'atb a= () o @=9)
dw=dz-x D)
/ dz =da- ¢'(2) da=a~—y
db = dz

27/42

0000@00000000000000

Information Propagation in Perceptron

z a
c=u' ((a—y)*
1 z=w x+b a=¢(z) =
/ dz = da- ¢ (2) do=a—y
db = dz

Forward propagation to compute the loss:

z=w x+b a=¢(z), L=(a—y)?/2

Backward propagation to compute the gradients:

da=a—y, dz = da - ¢'(2), dw=dz -z, db=dz

Observations

@ For gradient computation, perform one forward-backward pass and store intermediate variables.
@ By the chain rule, break down the gradient computation into smaller computational units.

@ The same concept applies to MLPs, where each perceptron or layer acts as a computational unit.

= = = =

28/42

00000 @0000000000000
Training Perceptron using Gradient Descent

o Backward propagation for gradient computation:

da=a—y, dz = da - ¢'(2), dw=dz - x, db=dz

o Recall that the cost is given by £(0) = £ 3" | {(as,y:).

@ Using linearity, the gradient is
oL 1 <= (ai, y:)
AT S B s

That is the average of df = 9¢(a,y)/00 over all training samples.
@ The gradient descent update rules for training the perceptron are:

n

wh=w— 130~) ¢ (21) @i,

Choice of Activation Function

The sigmoid function is chosen as the activation function, since the step function has a zero derivative.

) = = =

29/42

000000e@000000000000
Vectorization for Perceptro

Forward propagation: z=w @ +b=a = ¢(2) = £ = (a — y)?/2
Backward propagation: da = a —y => dz = da - ¢'(2) = dw = dz -« and db = dz

Cost function: £(0) = 13" | 1(a; —y:)*
o Define data matrix X € R™**™ and output vector y € R":
X=[x ® - @] and y=[yn v - yn
@ The pre-activation z can be computed as follows:
z = [z1 zn} = [me1+b mener] :'wTX—l— [b b] :w—rX—i—be—r

where e is a vector whose entries are all ones.

@ The forward propagation becomes

1
z:wTX—&-beT, a = ¢(z), L= %Ila—ylf

o Accordingly, the backpropagation becomes
da = (a —y)/n, dz = da © ¢'(2), dw=dz - X = Xdz, dv=dz -e=e dz,

where © is the element-wise product.

30/42

0000000 e00000000000

Pseudocode for Training Perceptron with Square Loss

Initia
Set le

lize weights vector w and bias b
arning rate eta

Set number of iterations E

For epoch = 1 to E do:
Forward Propagation
z=w.T*X+Dbx*xe.T
a = phi(z) # Apply activation function element-wise
L=|la-yll"2/ (2 *n) # Compute the cost function
Backward Propagation
da = (a - y)/n # Derivative of the loss w.r.t. a
dz = da * phi'(z) # Derivative of the loss w.r.t. z (element-wise product)
dw = X * dz # Derivative of the loss w.r.t. w
db = sum(dz) # Derivative of the loss w.r.t. b (sum over all training samples)
Gradient Descent Update
W =w - eta * dw
b =Db - eta *x db

End Fo

r

31/42

0000000 0e0000000000
Multilayer Perceptron

Multilayer Perceptron

32/42

000000000 e@000000000
Information Propagation in MLP

Let § = fo(x) = " be an L-layer MLP. Given a training sample (x, y), where & € R™* and y € R™v:

o Forward Propagation: Starting with «° = @, the output § = & is computed as:
2 =Wz + b, vee{1,2,...,L},
z’ = ¢(2"), vee{1,2,...,L}.

2 start with dz” = (x* — y) © ¢/(z%) and

o Backpropagation: Given the loss £(9,y) = 1|9 — y|
propagate gradients backward:

dzt — [W(Z+1)szl+1] ®¢/(Z4), vee{1,2,...,L -1},
dW* = dz'z"", vee{1,2,...,L—1},
db’ = dz", Vee{1,2,...,L—1}.

33/42

0000000000000 00000
Derivation of Gradient Descents in MLP

@ Using the chain rule, the derivative of loss {(x,y) w.r.t. W* and b’ are given by

(’%(m,y) ol(x y) dzh ol(x y _ aﬂ(m,y)

obl T 4= 0zh obl oz, 0 0zt
O, y) = 0l(w,y) 0zh XN Olwy) ;oo Olwy) oo
8Wi‘; — 0z%, 8W£ = 0z, @ 8zf i

where §; ; = 1 if i = j and O otherwise.

@ Using the df notation, we can put the derivatives in a matrix form:
db* = dz‘, and dW' =dz‘z""

@ By the computational graph, we can compute dz’ backward through a recurrent relation:
dzt — [W(£+1)sz€+l ®¢/(Zz),

which is derived from

oh(x,y) o= H(m,y) 025 TN 0@, y) et e oz
= = h
ozt /;1 azéJrl Dzt [;1 8z§+1 Wso ¢'(z), where D2l

=W/ (20).

34/42

0000000000000 00000
Vectorization for MLPs

o Define data matrix X € R%*™ and target matrix Y € R <™
X = [ml o m”:l’ Y = [yl Y2 yn]

With the square loss, the cost function becomes
11, . s 1, 9
L£(6) = — Wi — vl = —IY = Y%,
)=~ ;:1 SIgi —will” = | I

where || - |7 is the Frobenius norm and 4; = fo(x:) = =r.

e With X° =X and Y = X7, the forward propagation becomes
Z'=w'X"" tble’, Ve € [L]
X' =92, Ve e [L]

o With dZ" = 1(X* —Y) ® ¢/(Z"), the backpropagation is given by

dZ" = ¢ (2" ® [W““”dz“l} : Vee L —1]
AW’ =dz'x“ DT, Ve € [L]
db’ = dZ'e, Ve e [L]

35/42

000000000000 e000000

Pseudocode: Training an MLP with Gradient Descen

1 Initialize weights W and biases b for all layers

2 Set learning rate eta and number of epochs E

4 For epoch =1 to E do:

5 # Forward Propagation

6 Set A[0] = X

7 For 1 = 1 to L do:

8 Z[1] = W[1] = A[1-1] + b[1l] # Linear transformation

9 A[1] = phi(A[1]) # Apply activation function

10

11 # Compute the cost function

12 C = |IA[L] - YII"2 / (2 * n) # Square loss between predicted and true output
13

14 # Backward Propagation

15 dZ[L] = (A[LI-Y) * \phi'(Z[L]) # Gradient of the loss w.r.t to Z[L]
16 dW[L] = dzZ[L] * A[L-1] # Gradient of w.r.t. W[L]

17 db[L] = sum(dZ[L]) # Gradient of w.r.t. b[L]

18 for 1 = L-1 to 1 do:

19 dZ[1] = W[1+1].T * dZ[1+1] = \phi'(Z[1])

20 dw([1l] = dZ[1] * A[1-1].T # Gradient with respect to W[1]
21 db[1] = sum(dZ[1]) # Gradient with respect to b[1]

22

23 # Gradient Descent Update

24 for 1 = 1 to L do:

25 W[1] = W[1] - eta * dW[1l]

26 b[1] = b[1] - eta * db[l]

28 End For

36/42

0000000000000 e00000
Initialization

Initialization

37/42

000000000000 00e0000

Problematic Zero Initialization

Forward Propagation (biases omitted): Start with 2° = «
Z=wi' we{01,2,...,L}
' = o(z"),

Backward Propagation (biases omitted): Start with dz” = (¥ — y) © ¢/(2%)
dz' = [(W”l)sz”l] o¢'(z"), we{l1,2,...,L-1}
AW = dz*2“ D7

Zero Initialization Issues:

o If Wf =0, then 2 =0 and = = qﬁ(z[) will have identical coordinates across all layers. Since ¢
is applied element-wise, d)'(ze) and dz* will also have identical coordinates. Consequently, dW*
will have identical rows.

o After one gradient step, W* will contain identical rows (and only the last layer is updated),
resulting in z° and = having identical coordinates in subsequent iterations.

@ This leads to only one active neuron per layer, drastically reducing the network's capacity.

Symmetric Activation Patterns
Zero initialization in DNNs results in symmetric activation patterns problem in deep learning models.

= = = =

38/42

000000000000 000e000

Random Initialization

To address this problem, we use random initialization for the weights. For example, ij is i.i.d.
according to a Gaussian distribution with mean zero and variance o°:
£ iid. 2
Wij ~ N(Ovo—é)

o Notably, oy is usually a small number to prevent large values in W¥, e.g., oy = 0.02. Large
weights can cause z to fall into the flat regions of the activation function ¢.

o(x)

—— Sigmoid

o If so, ¢'(z) becomes small, so as small gradients and slowing down training.

39/42

0000000000000 000e00
oosing Variance o7

o Given W' € R™*"-1 are independent of ‘="' and E[W},] = 0:
E[z{] = ne 1 E[W] - Elz; '] = 0.

@ The variance of 2! is:

Var(z{] =n¢_1 Var[W};] .E[$§—1]2
:nl—IU[?E[QS(zf_l)P

:nzflag\/ar[szl} ,

where we use Var[W;] = o7 and assume ¢ is linear.

@ Recursively applying this relation across layers:

L
Var[z}] = |:H n51a?:| - Var[z}].
(=2
@ To ensure stable propagation (no vanishing or exploding features):

2
Ng—10p = 1 = op =

Te—1

40/42

0000000000000 0000e0
Summary: Neural Network Training

We use a training process iteratively update the parameters in MLPs:
o MLPs are parameterized function fg, where 8 = {W* b*}

o Given a training set {wi,yi}le and a loss function /, the training problem can be formulated as
an optimization problem:

mein L(9) = %Zlg(fe(mi),yi)

@ This optimization problem can be solved using gradient descent, which gradually reduces the
cost L along the steepest descent direction:

0"t = 6" —nvL(e")

where 1 > 0 is the learning rate.

@ The gradients in MLPs can be computed using the chain rule backward from the total cost.

41/42

0000000000000 00000e

Summary: Neural Network Training

@ Using the computational graph, the gradients can be effectively computed through
backpropagation:

e Forward Propagation (biases omitted): Start with ° = &, and compute
2 =W z' = ¢(2").

e Backward Propagation (biases omitted): Start with dz” = (2% — y) ® ¢'(2%) and calculate
dzt — [(WlJrl)szZH} ®¢>/(ZZ), AW = dzla@ DT

o Random initialization is preferred over zero initialization to avoid the issue of symmetric patterns.

@ What are other common activation functions?

@ How do | select the learning rate, width, and depth of the network?
@ Does gradient descent always converge? How can | speed up training?

@ Does good training performance guarantee good test performance?

42/42

	Universal Approximation Theorem
	Review of Derivatives
	Optimization and Gradient Descent
	Backpropogation

