
Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Neural Network Training

Tianxiang (Adam) Gao

School of Computing
DePaul University

1/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Outline

1 Universal Approximation Theorem

2 Review of Derivatives

3 Optimization and Gradient Descent

4 Backpropogation

2/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Recap: Definition of MLPs

An MLP with L layers computes an output ŷ = xL, where each layer ℓ ∈ [L] is defined recursively as:

zℓ = W ℓxℓ−1 + bℓ,

xℓ = ϕ(zℓ),

where the initial input is x0 = x and ϕ(·) is an activation function.

Conclusion
MLPs can solve nonlinear problems like XOR that a single perceptron cannot handle.

3/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Outline

1 Universal Approximation Theorem

2 Review of Derivatives

3 Optimization and Gradient Descent

4 Backpropogation

4/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Universal Approximation Theorem (UAT) of MLPs

A MLP can be expressed as a parameterized function f(x;θ) or fθ(x), where θ is the collection
of all weights {Wℓ}ℓ and biases {bℓ}ℓ.
We assume the existence of a true function f∗(x) : x 7→ y maps the input x to the target y.
The goal of the parameterized function fθ is to approximate f∗ by finding optimal values for θ.

Universal Approximation Theorem (UAT): MLPs fθ can approximate “any” function f∗ with
arbitrarily small errors, given sufficient parameters (or neurons).

5/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Universal Approximation Theorem (UAT):
Theorem: MLPs fθ can approximate “any” function f∗ with arbitrarily small errors, given
sufficient parameters (or neurons).
The UAT holds because “any” function on a compact set can be approximated by many simple
local pieces, and neural networks with nonlinear ϕ can construct these pieces and smoothly
combine them to approximate complex functions.
Existence: the UAT implies the existence of suitable parameter values.

Key Question
How can we find the appropriate values of θ in practice?

6/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Outline

1 Universal Approximation Theorem

2 Review of Derivatives

3 Optimization and Gradient Descent

4 Backpropogation

7/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Definition of Derivative

Definition: Given a real-valued function f(x), the derivative of f measures how the output of the
function changes with respect to (w.r.t.) changes in the input x.

If the input changes from a to x, the change in x is
∆x = x− a.
Consequently, the change in the output is ∆y := f(x)− f(a).
The derivative of f at a is the rate of change of f w.r.t. the
change of the input:

f ′(a) ≈ ∆y

∆x
=

f(x)− f(a)

x− a

Here, the approximation error is small when x is close to a

Notation: We often denote the derivative of f at x as

f ′(x) =
df

dx
, df ≈ ∆y, dx ≈ ∆x,

where the approximation is exact in the limit as ∆x → 0.

James Stewart, “Calculus.”
8/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Properties of Derivatives

Here are some fundamental properties of derivatives:
Linearity: The derivative of a linear combination of two functions h(x) = af(x) + bg(x) is:

h′(x) = af ′(x) + bg′(x)

Product Rule: The derivative of the product of two functions h(x) = f(x)g(x) is:

h′(x) = f ′(x)g(x) + f(x)g′(x)

Quotient Rule: The derivative of the quotient of two functions h(x) = f(x)
g(x)

(where g(x) 6= 0) is:

h′(x) =
f ′(x)g(x)− f(x)g′(x)

[g(x)]2

Chain Rule: The derivative of a composition of two functions h(x) = g(f(x)) is:

h′(x) = g′(f(x)) · f ′(x)

9/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Linear Approximation

A curve of f(x) lies very close to the line segment between the points on the graph. By zooming in
toward the point a, the graph looks more and more like its straight line.

Rewriting the “definition” formula of the derivative, we have:

f(x) ≈ f(a) + f ′(a) · (x− a) := L(x)

Here, L(x) is a linear function in x and it is called the linear
approximation of f at a.
The approximation error decreases as x gets closer to a.
The function L(x) is the tangent line to f(x) at x = a.

10/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Multivariate Function and Partial Derivatives

Consider a multivariate function f(x, y), where changes in the input can come from either x or y.
If we fix y and only vary x, we compute the partial derivative of f w.r.t. x:

∂f

∂x
≈ f(x+∆x, y)− f(x, y)

∆x
=

∆xf

∆x

Here, ∆xf denotes the change in f caused only by changes in x.
Similarly, if we fix x and only vary y, we compute the partial derivative of f w.r.t. y:

∂f

∂y
≈ f(x, y +∆y)− f(x, y)

∆y
=

∆yf

∆y

Here, ∆yf denotes the change in f caused only by changes in y.

Note: Partial derivatives measure how f(x, y) changes w.r.t. one variable while keeping the other
variable constant.

11/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Tangent Plane as a Linear Approximation

Similar to a single-variable function f(x), a function f(x, y) has a linear approximation given by:

f(x, y) ≈ f(a, b) +
∂f

∂x
(a, b) · (x− a) +

∂f

∂y
(a, b) · (y − b) := L(x, y)

Here, L(x, y) represents the tangent plane to the surface f(x, y) at the point (a, b, f(a, b)).
12/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Gradient Vector
Consider a multivariate function f(x) = f(x1, . . . , xn), where x ∈ Rn.

Gradient: The gradient of f(x) is a vector of partial derivatives, defined as:

∇f(x) =
[
∂f(x)
∂x1

· · · ∂f(x)
∂xn

]⊤
.

Linear Approximation: The output change ∆f can be approximated by:

∆f ≈ ∂f

∂x1
·∆x1 + · · ·+ ∂f

∂xn
·∆xn = ∇f(x) ·∆x,

where the approximation becomes exact if ∆x → 0.
Vector Field: The gradient ∇f is a vector field that comprises both magnitude and direction,
where the magnitude is the Euclidean norm defined by ‖a‖ =

√∑n
i=1 a

2
i .

13/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Steepest Descent Direction

Descent Direction
The gradient direction is the steepest ascent direction for the function f . Hence, the negative
gradient is the steepest descent direction.

From the linear approximation, we have

∆f ≈ ∇f(x) ·∆x = ‖∇f(x)‖ · ‖∆x‖ · cosα

where α is the angle between ∇f(x) and ∆x.

The steepest ascent in ∆f is obtained when α = 0, i.e., ∆x ∝ ∇f(x)

The steepest descent in ∆f is obtained when α = π, i.e., ∆x ∝ −∇f(x).
14/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Summary

The derivative f ′ of a function f is the rate of change of the outputs w.r.t. to its input.
Linearity, product rule, quotient rule, chain rule, partial derivatives, gradient
The output change can be approximated by the inner product of ∇f and ∆x, i.e.,
∆f ≈ ∇f(x) ·∆x.
The negative gradient direction is the steepest descent direction.

15/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Discussion Questions

Compute the gradients of the following functions:
f(x) = 1

2
(x− y)2

f(x) = 1 {x ≥ 0}, i.e., the step function: f(x) = 1 if x ≥ 0, and f(x) = 0 otherwise
f(x) = 1

1+e−x , i.e., sigmoid function. Hint: use the chain rule by z := 1 + e−x.
f(x) = a⊤x, where a,x ∈ Rn. Hint: write the dot product as summation.

Instructions: Discuss these questions in small groups of 2-3 students.

16/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Solutions to the Discussion Questions
Compute the derivatives of the following functions:

f(x) = 1
2
(x− y)2, f ′(x) = x− y

f(x) = 1 {x ≥ 0}, f ′(x) = 0 for all x, except x = 0 where f ′(x) is not defined.
f(x) = 1

1+e−x , f ′(x) = e−x

(1+e−x)2
= f(x)(1− f(x))

f(x) = a⊤x, the partial derivative is ∂f
∂xi

= ai, and the gradient is ∇f(x) = a.

Zero Derivative
The step function’s derivative, ϕ′(x), is zero (everywhere except at x = 0).

17/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Outline

1 Universal Approximation Theorem

2 Review of Derivatives

3 Optimization and Gradient Descent

4 Backpropogation

18/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Introduction to Training Process

For a general machine learning (ML) model including MLPs fθ, it is almost impossible to assign
parameter values manually. Instead, we rely on the process called training:

The training set is a collection of input-output pairs, i.e., {(xi, yi)}ni=1

A ML model fθ computes ŷi = fθ(xi) as an estimate to yi. Our goal is to find θ such that

ŷi ≈ yi, ∀i ∈ [n] := {1, 2, · · · , n},

To measure the divergence between ŷ and y, we use a loss function ℓ(y, ŷ).
The objective function or total cost is the average of divergence among the training data:

L(θ) := 1

n

n∑
i=1

ℓ(ŷi, yi) =
1

n

n∑
i=1

ℓ(fθ(xi), yi)

The training process aims to iteratively update the parameters θ to gradually reduce the cost L.

19/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Loss Function

The choice of loss functions depends on the learning task:
If the output y ∈ R is real-valued, the learning problem is called regression
If the output y ∈ {0, 1} is binary value, it is called (binary) classification and y is called label.
Square loss: as a common loss function in a regression problem, defined

ℓ(ŷ, y) =
1

2
(ŷ − y)2

Cross-entropy loss: as a broadly used loss function in classification, defined

ℓ(ŷ, y) = −
(
y log ŷ + (1− y) log(1− ŷ)

)
,

where log(·) is the log function, which can be taken with a natural base e or base 10.

Example
Generally, our estimate ŷ is not binary value but a positive number between 0 and 1, e.g., ŷ = 0.6:

If y = 1, then ℓ(ŷ, y) = −[1 · log 0.6 + (1− 1) log(1− 0.6)] = − log 0.6 ≈ 0.22,
If y = 0, then ℓ(ŷ, y) = −[0 · log 0.6 + (1− 0) log(1− 0.6)] = − log 0.4 ≈ 0.40,

where we assume base 10.

20/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Gradient Descent
Given an objective function L(θ), the learning problem of finding θ to best fit each yi by fθ(xi) in the
training set is equivalent to solving the following optimization problem:

min
θ

L(θ),

which can be interpreted as:
“Minimize the objective function L with respect to (w.r.t.) the variable θ.”

To solve this optimization problem, the gradient descent method iteratively updates θ by moving in
steepest descent direct. For each iteration k = 0, 1, 2, . . . , the update rule is:

θk+1 = θk − η∇θL(θk),

where:
θk ∈ Rp is the current value of the parameters, assuming θ has p components.
θk+1 ∈ Rp is the updated value.
θ0 ∈ Rp is the initial value chosen by the practitioner.
η > 0 is the learning rate, controlling the step size of each update.
∇θL(θ) is the gradient of L w.r.t. θ:

∇θL(θ) =
[
∂L(θ)
∂θ1

∂L(θ)
∂θ2

· · · ∂L(θ)
∂θp

]⊤
with each ∂L(θ)/∂θi representing the partial derivative of L w.r.t. θi for all i ∈ [p].

21/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Gradient Descent Intuition

Gradient Descent:

θk+1 = θk − η∇L(θk).

Warning
Learning rate η and initialization θ0 are crucial to the performance of gradient descent.

22/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Summary of Gradient Descent

MLPs are parameterized functions fθ(x), where θ represents the weights and biases.
Given a training set, our goal is to find the optimal θ that best fits the training samples.
The divergence between the estimate ŷi = fθ(xi) and the true value yi is measured by the loss
function ℓ.
The cost L is the average loss over the training samples.
Finding the optimal θ is equivalent to solving an optimization problem that minimizes the cost L
with respect to θ.
The gradient descent method iteratively updates θ to reduce the cost L.

23/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Outline

1 Universal Approximation Theorem

2 Review of Derivatives

3 Optimization and Gradient Descent

4 Backpropogation

24/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Perceptron

Perceptron

25/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Gradient Computation for Perceptron

Perceptron: Recall ŷ = fθ(x) with θ = {w, b} is defined as follows:

z = w⊤x+ b, a = ϕ(z), fθ(x) = a.

Given a training sample (x, y), with ŷ = fθ(x) = a, the loss is

ℓ(a, y) =
(ŷ − y)2

2
=

(fθ(x)− y)2

2
=

(a− y)2

2

Using the chain rule, the derivative of loss ℓ w.r.t. to each parameter θ is given by

∂ℓ(a, y)

∂θ
=

∂ℓ(a, y)

∂a
· ∂a
∂θ

Specifically, we have

∂ℓ(a, y)

∂w
=

∂ℓ(a, y)

∂a
· ∂a
∂z

· ∂z

∂w
,

∂ℓ(a, y)

∂b
=

∂ℓ(a, y)

∂a
· ∂a
∂z

· ∂z
∂b

,

where
∂ℓ(a, y)

∂a
= a− y,

∂a

∂z
= ϕ′(z),

∂z

∂w
= x,

∂z

∂b
= 1

Question: Have you seen any common terms involved in the computation?
26/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Computational Graph in Perceptron
Denote dθ := ∂ℓ(a, y)/∂θ, where θ represents any variable involved, e.g., a, z, w, and b.

Rewrite gradient computation using dθ notation:
∂ℓ(a, y)

∂w
=

∂ℓ(a, y)

∂a︸ ︷︷ ︸
da

·∂a
∂z

︸ ︷︷ ︸
dz

· ∂z
∂w

︸ ︷︷ ︸
dw

,
∂ℓ(a, y)

∂b
=

∂ℓ(a, y)

∂a︸ ︷︷ ︸
da

·∂a
∂z

︸ ︷︷ ︸
dz

·∂z
∂b

︸ ︷︷ ︸
db

Using this relation, compute the gradients of the perceptron in a backward order:

da = a− y, dz = da · ϕ′(z), dw = dz · x, db = dz

Computational graph:

27/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Information Propagation in Perceptron

Forward propagation to compute the loss:

z = w⊤x+ b, a = ϕ(z), ℓ = (a− y)2/2

Backward propagation to compute the gradients:

da = a− y, dz = da · ϕ′(z), dw = dz · x, db = dz

Observations
For gradient computation, perform one forward-backward pass and store intermediate variables.
By the chain rule, break down the gradient computation into smaller computational units.
The same concept applies to MLPs, where each perceptron or layer acts as a computational unit.

28/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Training Perceptron using Gradient Descent

Backward propagation for gradient computation:

da = a− y, dz = da · ϕ′(z), dw = dz · x, db = dz

Recall that the cost is given by L(θ) = 1
n

∑n
i=1 ℓ(ai, yi).

Using linearity, the gradient is

∂L
∂θ

=
∂

∂θ

[
1

n

n∑
i=1

ℓ(ai, yi)

]
=

1

n

n∑
i=1

∂ℓ(ai, yi)

∂θ

That is the average of dθ = ∂ℓ(a, y)/∂θ over all training samples.
The gradient descent update rules for training the perceptron are:

w+ = w − η

n

n∑
i=1

(ai − yi) · ϕ′(zi) · xi,

b+ = b− η

n

n∑
i=1

(ai − yi) · ϕ′(zi).

Choice of Activation Function
The sigmoid function is chosen as the activation function, since the step function has a zero derivative.

29/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Vectorization for Perceptron

Forward propagation: z = w⊤x+ b =⇒ a = ϕ(z) =⇒ ℓ = (a− y)2/2

Backward propagation: da = a− y =⇒ dz = da · ϕ′(z) =⇒ dw = dz · x and db = dz

Cost function: L(θ) = 1
n

∑n
i=1

1
2
(ai − yi)

2.

Define data matrix X ∈ Rnx×n and output vector y ∈ Rn:

X =
[
x1 x2 · · · xn

]
and y =

[
y1 y2 · · · yn

]
The pre-activation z can be computed as follows:

z =
[
z1 · · · zn

]
=

[
w⊤x1 + b · · · w⊤xn + b

]
= w⊤X +

[
b · · · b

]
= w⊤X + be⊤

where e is a vector whose entries are all ones.
The forward propagation becomes

z = w⊤X + be⊤, a = ϕ(z), L =
1

2n
‖a− y‖2

Accordingly, the backpropagation becomes

da = (a− y)/n, dz = da� ϕ′(z), dw = dz ·X = Xdz, db = dz · e = e⊤dz,

where � is the element-wise product.
30/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Pseudocode for Training Perceptron with Square Loss

Initialize weights vector w and bias b
Set learning rate eta
Set number of iterations E

For epoch = 1 to E do:
Forward Propagation
z = w.T * X + b * e.T
a = phi(z) # Apply activation function element-wise
L = ||a - y||^2 / (2 * n) # Compute the cost function

Backward Propagation
da = (a - y)/n # Derivative of the loss w.r.t. a
dz = da * phi'(z) # Derivative of the loss w.r.t. z (element-wise product)
dw = X * dz # Derivative of the loss w.r.t. w
db = sum(dz) # Derivative of the loss w.r.t. b (sum over all training samples)

Gradient Descent Update
w = w - eta * dw
b = b - eta * db

End For
31/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Multilayer Perceptron

Multilayer Perceptron

32/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Information Propagation in MLP

Let ŷ = fθ(x) = xL be an L-layer MLP. Given a training sample (x,y), where x ∈ Rnx and y ∈ Rny :

Forward Propagation: Starting with x0 = x, the output ŷ = xL is computed as:

zℓ = W ℓxℓ−1 + bℓ, ∀ℓ ∈ {1, 2, . . . , L},

xℓ = ϕ(zℓ), ∀ℓ ∈ {1, 2, . . . , L}.

Backpropagation: Given the loss ℓ(ŷ,y) = 1
2
‖ŷ − y‖2, start with dzL = (xL − y)� ϕ′(zL) and

propagate gradients backward:

dzℓ =
[
W (ℓ+1)⊤dzℓ+1

]
� ϕ′(zℓ), ∀ℓ ∈ {1, 2, . . . , L− 1},

dW ℓ = dzℓxℓ⊤, ∀ℓ ∈ {1, 2, . . . , L− 1},

dbℓ = dzℓ, ∀ℓ ∈ {1, 2, . . . , L− 1}.

33/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Derivation of Gradient Descents in MLP

Using the chain rule, the derivative of loss ℓ(x,y) w.r.t. W ℓ and bℓ are given by

∂ℓ(x,y)

∂bℓi
=

m∑
α=1

∂ℓ(x,y)

∂zℓ
α

∂zℓ
α

∂bℓi
=

m∑
α=1

∂ℓ(x,y)

∂zℓ
α

· δα,i =
∂ℓ(x,y)

∂zℓ
i

∂ℓ(x,y)

∂W ℓ
ij

=
m∑

α=1

∂ℓ(x,y)

∂zℓ
α

∂zℓ
α

∂W ℓ
ij

=
m∑

α=1

∂ℓ(x,y)

∂zℓ
α

· δα,ix
ℓ−1
j =

∂ℓ(x,y)

∂zℓ
i

xℓ−1
j

where δi,j = 1 if i = j and 0 otherwise.
Using the dθ notation, we can put the derivatives in a matrix form:

dbℓ = dzℓ, and dW ℓ = dzℓxℓ⊤

By the computational graph, we can compute dzℓ backward through a recurrent relation:

dzℓ =
[
W (ℓ+1)⊤dzℓ+1

]
� ϕ′(zℓ),

which is derived from

∂ℓ(x,y)

∂zℓ
α

=

m∑
β=1

∂ℓ(x,y)

∂zℓ+1
β

∂zℓ+1
β

∂zℓ
α

=

m∑
β=1

∂ℓ(x,y)

∂zℓ+1
β

W ℓ+1
βα ϕ′(zℓ

α), where
∂zℓ+1

β

∂zℓ
α

= W ℓ+1
βα ϕ′(zℓ

α).

34/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Vectorization for MLPs

Define data matrix X ∈ Rdx×n and target matrix Y ∈ Rdy×n:

X =
[
x1 x2 · · · xn

]
, Y =

[
y1 y2 · · · yn

]
.

With the square loss, the cost function becomes

L(θ) = 1

n

m∑
i=1

1

2
‖ŷi − yi‖2 =

1

2n
‖Ŷ − Y ‖2F ,

where ‖ · ‖F is the Frobenius norm and ŷi = fθ(xi) = xL
i .

With X0 = X and Ŷ = XL, the forward propagation becomes

Zℓ = W ℓXℓ−1 + bℓe⊤, ∀ℓ ∈ [L]

Xℓ = ϕ(Zℓ), ∀ℓ ∈ [L]

With dZL = 1
n
(XL − Y)� ϕ′(ZL), the backpropagation is given by

dZℓ = ϕ′(Zℓ)�
[
W (ℓ+1)⊤dZℓ+1

]
, ∀ℓ ∈ [L− 1]

dW ℓ = dZℓX(ℓ−1)⊤, ∀ℓ ∈ [L]

dbℓ = dZℓe, ∀ℓ ∈ [L]

35/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Pseudocode: Training an MLP with Gradient Descent

1 Initialize weights W and biases b for all layers
2 Set learning rate eta and number of epochs E
3
4 For epoch = 1 to E do:
5 # Forward Propagation
6 Set A[0] = X
7 For l = 1 to L do:
8 Z[l] = W[l] * A[l-1] + b[l] # Linear transformation
9 A[l] = phi(A[l]) # Apply activation function

10
11 # Compute the cost function
12 C = ||A[L] - Y||^2 / (2 * n) # Square loss between predicted and true output
13
14 # Backward Propagation
15 dZ[L] = (A[L]-Y) * \phi'(Z[L]) # Gradient of the loss w.r.t to Z[L]
16 dW[L] = dZ[L] * A[L-1] # Gradient of w.r.t. W[L]
17 db[L] = sum(dZ[L]) # Gradient of w.r.t. b[L]
18 for l = L-1 to 1 do:
19 dZ[l] = W[l+1].T * dZ[l+1] * \phi'(Z[l])
20 dW[l] = dZ[l] * A[l-1].T # Gradient with respect to W[l]
21 db[l] = sum(dZ[l]) # Gradient with respect to b[l]
22
23 # Gradient Descent Update
24 for l = 1 to L do:
25 W[l] = W[l] - eta * dW[l]
26 b[l] = b[l] - eta * db[l]
27
28 End For

36/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Initialization

Initialization

37/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Problematic Zero Initialization

Forward Propagation (biases omitted): Start with x0 = x

zℓ = W ℓxℓ−1, ∀ℓ ∈ {0, 1, 2, . . . , L}

xℓ = ϕ(zℓ),

Backward Propagation (biases omitted): Start with dzL = (xL − y)� ϕ′(zL)

dzℓ =
[
(W ℓ+1)⊤dzℓ+1

]
� ϕ′(zℓ), ∀ℓ ∈ {1, 2, . . . , L− 1}

dW ℓ = dzℓx(ℓ−1)⊤

Zero Initialization Issues:
If W ℓ = 0, then zℓ = 0 and xℓ = ϕ(zℓ) will have identical coordinates across all layers. Since ϕ
is applied element-wise, ϕ′(zℓ) and dzℓ will also have identical coordinates. Consequently, dW ℓ

will have identical rows.
After one gradient step, W ℓ will contain identical rows (and only the last layer is updated),
resulting in zℓ and xℓ having identical coordinates in subsequent iterations.
This leads to only one active neuron per layer, drastically reducing the network’s capacity.

Symmetric Activation Patterns
Zero initialization in DNNs results in symmetric activation patterns problem in deep learning models.

38/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Random Initialization

To address this problem, we use random initialization for the weights. For example, W ℓ
ij is i.i.d.

according to a Gaussian distribution with mean zero and variance σ2:

W ℓ
ij

i.i.d.∼ N (0, σ2
ℓ)

Notably, σℓ is usually a small number to prevent large values in W ℓ, e.g., σℓ = 0.02. Large
weights can cause z to fall into the flat regions of the activation function ϕ.

If so, ϕ′(z) becomes small, so as small gradients and slowing down training.

39/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Choosing Variance σ2
ℓ

Given W ℓ ∈ Rnℓ×nℓ−1 are independent of xℓ−1 and E[W ℓ
ij] = 0:

E[zℓ
i] = nℓ−1E[W ℓ

ij] · E[xℓ−1
j] = 0.

The variance of zℓ
i is:

Var[zℓ
i] =nℓ−1Var[W

ℓ
ij] · E[xℓ−1

j]2

=nℓ−1σ
2
ℓE[ϕ(zℓ−1

j)]2

=nℓ−1σ
2
ℓVar[z

ℓ−1
j],

where we use Var[W ℓ
ij] = σ2

ℓ and assume ϕ is linear.
Recursively applying this relation across layers:

Var[zL
i] =

[
L∏

ℓ=2

nℓ−1σ
2
ℓ

]
·Var[z1

i].

To ensure stable propagation (no vanishing or exploding features):

nℓ−1σ
2
ℓ = 1 =⇒ σℓ =

1
√
nℓ−1

.

40/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Summary: Neural Network Training

We use a training process iteratively update the parameters in MLPs:
MLPs are parameterized function fθ, where θ = {W ℓ, bℓ}
Given a training set {xi,yi}ℓi=1 and a loss function ℓ, the training problem can be formulated as
an optimization problem:

min
θ

L(θ) = 1

n

n∑
i=1

ℓ(fθ(xi),yi)

This optimization problem can be solved using gradient descent, which gradually reduces the
cost L along the steepest descent direction:

θk+1 = θk − η∇L(θk)

where η > 0 is the learning rate.
The gradients in MLPs can be computed using the chain rule backward from the total cost.

41/42

Universal Approximation Theorem Review of Derivatives Optimization and Gradient Descent Backpropogation

Summary: Neural Network Training

Using the computational graph, the gradients can be effectively computed through
backpropagation:

• Forward Propagation (biases omitted): Start with x0 = x, and compute

zℓ = W ℓxℓ−1, xℓ = ϕ(zℓ).

• Backward Propagation (biases omitted): Start with dzL = (xL − y)� ϕ′(zL) and calculate

dzℓ =
[
(W ℓ+1)⊤dzℓ+1

]
� ϕ′(zℓ), dW ℓ = dzℓx(ℓ−1)⊤.

Random initialization is preferred over zero initialization to avoid the issue of symmetric patterns.

Questions
What are other common activation functions?
How do I select the learning rate, width, and depth of the network?
Does gradient descent always converge? How can I speed up training?
Does good training performance guarantee good test performance?

42/42

	Universal Approximation Theorem
	Review of Derivatives
	Optimization and Gradient Descent
	Backpropogation

