Overview of Deep Learning

Tianxiang (Adam) Gao

School of Computing
DePaul University

1/31

@ What is Deep Learning?
© Brief History of Neural Networks
© Perceptron

e Multilayer Perceptrons

2/31

@00

Recap: What is Al?

o Artificial Intelligence (Al) is a broad field that focuses on creating systems capable of performing
tasks that typically require human intelligence.

@ To pass the (total) Turing Test, it needs:

Natural language processing (NLP) to enable it to communicate effectively;

Knowledge representation to store and retrieve information;

Automated reasoning to use the stored information to answer questions and to draw new conclusions;

Machine learning (ML) to recognize patterns from data and adapt to new situations;

Computer vision (CV) to perceive objects;

Robotics to manipulate and interact with the physical world.

© © © © 06 0

Russell, Stuart J., and Peter Norvig. 2016. “Artificial Intelligence: A Modern Approach.”
3/31

oeo

Recap: What is ML?

Data Representation/Features Model Reasoning/ Decision

2 &

@ Machine learning (ML) is a subset of Al that focuses on developing algorithms and (statistical)
models to learn from (training) data and generalize to unseen data.
@ Commonly used algorithms and models are categorized into:

e Supervised learning: linear/logistic regression, support vector machines (SVM), decision trees, and
neural networks

o Unsupervised learning: k-means clustering, dimensionality reduction, Gaussian mixture models,
generative models

o Reinforcement learning: Q-Learning, policy gradient, deep Q-networks (DQN)

4/31

ooe

What is DL?

Deep Neural Network

Input Layer

edges combinations of edges object models

o Deep learning (DL) is a subset of ML that focuses on using deep neural networks (DNN) with
many layers to learn representation in (large) datasets.
o It is capable of automatically learning features from raw data, unlike other machine learning models
that rely on manually crafted features.
o It learns the intricate structures from data by using backpropagation to update the parameters in

DNN.
o It encompasses various neural network architectures, including convolutional neural Networks (CNNs),

recurrent neural networks (RNNs), transformers, and graph neural networks (GNNs), each tailored to

specific tasks.
o It has led to significant breakthroughs in various applications, such as CV, NLP, speech recognition,

and biomedical science.

5/31

90000000000

© Brief History of Neural Networks

6/31

Early Beginnings and “Al Winters"

1940s: Early Beginnings

@ In 1943, Warren McCulloch and Walter Pitts introduced the first mathematical model of a
neuron, the McCulloch-Pitts Neuron Model.

@ In 1949, Donald Hebb proposed Hebbian learning in his book The Organization of Behavior,
summarized as “cells that fire together wire together.”

1950s-1960s: Perceptron and the First “Al Winter”
© In 1958, Frank Rosenblatt proposed the perceptron, an early neural network model.

@ In 1969, Marvin Minsky and Seymour Papert demonstrated that the perceptron could not solve
non-linear problems, such as the XOR problem, leading to the first “Al winter.”

1980s-1990s: Revival with Expert Systems and Backpropagation

@ In 1980, XCON became one of the first commercially successful expert systems, marking a
turning point for Al in the industry.
@ In 1986, Geoffrey Hinton, David Rumelhart, and Ronald Williams popularized backpropagation in
their Nature paper, “Learning Representations by Back-Propagating Errors.”
1990s-2000s: The Second “Al Winter”

@ The second “Al winter” occurred mainly due to the failure of expert systems to scale and
generalize beyond narrow, rule-based tasks.

@ Neural networks, despite the promise shown after the introduction of backpropagation, were still
constrained by limited computational power, scalability issues, and insufficient data.

7/31

OO®00000000
Emergence of Deep Learning

1990s-2000s: Advancements and the Emergence of Deep Learning

@ In 1989, Yann LeCun et al. created the LeNet as an early example of a Convolutional Neural
Networks (CNN), which became critical for image processing tasks.

@ In 1997, the Long Short-Term Memory (LSTM) network was proposed by Sepp Hochreiter and
Jurgen Schmidhuber that overcome the problem of vanishing gradients in RNNs

8/31

O00@0000000

Modern Era: AlexNet 2012

2010s-Present: Deep Learning Revolution

o In 2012, AlexNet trained using GPUs dominated the ImageNet competition

4
A 34.5%,
| 2837, paad
3 30% 25.8%, 26,27, 21.0% 21%
g i)
[N
20% 3
£ a0% 16.4% g -g
" _ 213 Y
L izl 2] |8
€ 10% gl1S 3] |5
41 ¢ &“Jl & g g : 5
= | %] HICIIEIRERIE
=
2010 201 2012 \ 2012 Results
#1 result / year

AlexNet (15.3%, ofter extro ‘Cm:n‘.ng)

ImageNet is a large-scale image dataset consisting of 1,000 classes, 1 million training samples, and 100;000 test samples.
9/31

https://www.image-net.org/

O000e000000

Modern Era: ResNet 2015

2010s-Present: Deep Learning Revolution

@ In 2015, the introduction of skip connection in ResNet allowed the training of deeper networks,
e.g., 152 layers, achieving better-than-human performance on ImageNet

30 282
\152 Iayers! |152 Iayers| |152 Iayersl

25
o & A

16.4 :
15
10 ;

7.3]

6.7

5.1
. j, b= . S oS
. ., H B = =
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevskyetal Zeiler & Simonyan & Szegedy et al He et al Shaoet al Huetal Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)

10/31

Modern Era: AlphaGo 2016-2017

2010s-Present: Deep Learning Revolution

o In 2016, AlphaGo gained worldwide attention by defeating South Korean professional Go player
Lee Sedol, one of the best players in the world, showing that Al can master complex and strategic
games.

@ In 2017, AlphaGo further cemented its dominance by defeating the world's number one Go player,
Ke Jie of China, in a best-of-three match, winning all three games.

The Future of Go.

11/31

000000 e0000

Modern Era: Transformer and Attention 2017-2022

2010s-Present: Deep Learning Revolution

@ In 2017, the Transformer architecture and attention

Output mechanism revolutionized NLP, CV, and other scientific

Probabilities

fields with superior performance on complex tasks.

o In 2018, BERT and GPT emerged as foundational
pre-trained models, significantly improving NLP tasks
across various applications.

@ In 2020, OpenAl introduced GPT-3, the largest

Add & Norm
Feed
Forward
Add & Norm
Multi-Head

Add & Norm

Alterion N language model of its time, with 175 billion parameters,
. T trained on 499 billion tokens (approximately 570 GB of
i) | | [vesed text) using 10,000 GPUs over several months.
Attention Attention
7 T 7 @ In 2022, OpenAl released ChatGPT, based on GPT-3.5,
- J
Postional Positional gaining widespread attention for generating human-like
Encoding 3 ")_® Encoding text
Tnput Output .
Embedding Embedding) .
1 e From 2023 to present, major LLM advancements include
nputs e Google's Gemini, Meta's Llama 2 & 3, Anthropic's

Claude, and Amazon's Nova, pushing multimodality,
open-source frameworks, and ethical Al.

12/31

Modern Era: AlphaFold 2020-2021

2010s—Present: Deep Learning Revolution
@ In 2020, AlphaFold 2 by DeepMind achieved breakthrough performance in the CASP14 protein
folding competition, solving the decades-old challenge of predicting 3D protein structures.

@ In 2021, DeepMind released the AlphaFold Protein Structure Database, providing open access
to structures of nearly all known proteins, revolutionizing biology and medicine.

@ AlphaFold demonstrated the transformative impact of deep learning beyond traditional Al
benchmarks, enabling advances in drug discovery, genomics, and life sciences.

"0galgadE s W O
A

ey

13/31

00000000 e00

Modern Era: Generative Al 2021-Prese

2010s-Present: Deep Learning Revolution

o In 2021, Diffusion models like Denoising
Diffusion Probabilistic Models (DDPM)
became prominent for generating high-quality
images, challenging the dominance of GANSs.

@ In 2022, Stability Al released Stable
Diffusion, allowing users to generate images
from text prompts based on diffusion models.

@ In 2024, OpenAl introduced Sora, a
text-to-video model based on diffusion models
that can generate about 1 minute of
high-quality video from text prompts.

14/31

000000000 e0

Modern Era: Towards Agentic Al 2023—Present

2020s—Present: From Content Generation to Acting

@ Agentic Al refers to Al systems that can plan, act, and iterate toward goals, rather than only
generating outputs.

o Modern agents often combine LLMs with tools (search, code execution, APIs) and memory to
solve multi-step tasks.

@ Agents operate in a closed loop: observe — reason — act — receive feedback — update plan.

o Key challenges include reliability, safety/alignment, long-horizon planning, and evaluation of
real-world performance.

15/31

0000000000 e

Modern Era: Al World Models 2024—Present

2020s—Present: Learning and Simulating the World

@ A world model is an internal model that captures aspects of an environment's state and
dynamics.

@ It enables prediction (what happens next) and planning (choosing actions by simulating
outcomes).

o World models support model-based RL, robotics, and generative video/3D by learning physical
and semantic structure.

@ The long-term goal is Al systems that understand and simulate the world, not just generate text
or images.

16/31

900000000

Outline

© Perceptron

17/31

O®0000000

Biological Neuron

Dendrite

o Dendrite: Receives signals from other neurons
@ Soma: Processes the information
@ Axon: Transmits signals away from Soma

@ Axon terminal: Send signals to other neurons

18/31

00®000000

Perceptron

INPUT
VALUES WEIGHTS
X—> W

STEP
\\\\\i:MMAﬂON FUNCTION
X > W, > E > I » OUTPUT

xS—P W3

@ Each input z; is multiplied by its corresponding weight w;, i.e., wix;
® The weighted inputs are summed together (along with the bias b), i.e., z =Y wix; +b

@ The sum is passed through a step function to produce the estimated output, i.e., ¢(z)

19/31

000e00000

Mathematical Form of Perceptron

INPUT
VALUES

WEIGHTS
xl — W

YL:MMAHON N
Xy > Wy »> E » I » OUTPUT

e

x3—> W3

Mathematical Form of Perceptron:
J=0¢ (szwz +b>
i=1

@ x; are the input, w; are the weights, b is the bias, ¢ is the prediction, ¢ is the step function:

1, if2>0
¢(2) = {0, if 2 <0

20/31

0000e0000

Perceptron Example

ValUgs WEICHTS Consider
X1— W ormanon STEP o Inputs: @1, z2 € {0,1} are binary values
FUNCTION .
\ o Weights: w1 =1, wa =1
—Qa > Z > J_ > ouTPUT @ Bias: b=-1.5
X W, The perceptron output is computed as:
?j = (;5(11}1.131 + waxo + b) = ¢(1 cx1+ 1290 — 1.5)
o Input: z1 = 0,22 =0; Output: z2=1-0+1-0—-15=-15 = §=¢(2)=0
o Input: z1 = 0,22 =1; Output: 2=1-0+1-1-15=-05 = G=¢(z)=0.
o Input: z1 = 1,22 =0; Output: 2=1-1+1-0—-15=-05 = Gg=¢(2)=0
o Input: z1 =1,20=1;Output: 2=1-1+1-1-15=05 = g=¢(z)=1.

The perceptron correctly implements the AND operator.

21/31

O00000e@000

Matrix-Vec

@ Define vectors z, w € R™:

T w1

T2 w2
T = , w=| .

Tn Wn,

@ The perceptron can be defined in vector form:
§=o(w'z+b),

where the inner or dot product of w and « is given by

n
T
w = Wi T4
=1

22/31

Using Perceptrons to Implement Logical Operators

Logical operators such as AND (A), OR (V), and NOT (—):
@ A: the result is true if both x; and z2 are
@ V: the result is true if either 1 and zs is

@ —: the result is true if the input is not

T1 | T2 | T1 A2 | T1 VT2 | TX1
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Table: Boolean table illustrating A, V, and — operations with 1 and z2

Perceptron can be used to implement them:

§=d(w z+b) = p(wizs + waxs + b)

o Ntw=[l,1]and b=—-15
o Viw=1[1l,1]and b—05
e w=—1land b=0.5

23/31

0000000 e0

Limitations of Percept

The perceptron cannot solve nonlinear problems such as the logical operator XOR ():

@ @: the result is true if 1 and x2 are different

T1 | 22 | T1Ax2 | 1 Va2 | T11 x1 D x2
0 0 0 0 1 0
0 1 0 1 1 1
1 0 0 1 0 1
1 1 1 1 0 0

Table: Boolean table illustrating A, V, and @ operations with z; and z2

The perceptron can only solve linearly separable data:

T T T2
L1) 1.1
O []
(0,1) (0,1)
?
(0.0) (1,0) (0.0) (1o o (0,0) 1o o
(a) AND (A) operator (b) OR (V) operator (c) XOR (@) operator

24/31

OO0000000e

Summary of Perceptron

INPUT

VALUES WEIGHTS

\\\\\iiMMAﬂON FuzgﬁbN
Xy > W, > E > I » OUTPUT

x3—> 2]

x1—> wq

The perceptron is defined as:

§=d(w'z+b),

Mathematical Model: It computes the weighted sum of the inputs along with the bias term

Activation: The perceptron (or neuron) is activated by the step (activation) function if the
weighted sum exceeds a certain threshold.

Linear Separability: The perceptron can classify linearly separable data, e.g., A, V, and —.

Limitation: It cannot solve nonlinear problems, e.g., ®.

25/31

900000

Outline

e Multilayer Perceptrons

26/31

Oe0000

Why Multilayer Perceptrons (MLP)?

Recap: A single perceptron can implement AND, OR, and NOT, but not XOR
However, XOR can be implemented by multiple percetrons.
@ NAND 1: the result is false if both inputs are true

T1 T2 1 N\ T2 1 T Z2
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0
@ A single perceptron can implement NAND with w = [—1,—1], and b= 1.5

@ We can express XOR in terms of AND, OR, and NAND as follows
1 Do = ($1 Vv 932) AN (:El T IQ).

This forms a 2-layer network:

27/31

MLP for XOR

The XOR function can be computed using an MLP as follows:

o Define logical operators using single perceptrons:
hi(z) = p(w; +b;), Vi€ {1,2,3},

where the weights and biases are:

OR Wy = (1, 1), bl = —-0.5
NAND : wy=(—-1,-1), by=15
AND : w3 = (1, 1), b3 =-1.5

o Define the activation vector a € R? as the intermediate results from the first layer:

-]

a =

a2

where a1 = hi(x) from the OR output and a2 = ha(x) from the NAND output.

o Compute the estimated output ¢ using the activation vector a from the first layer:
§ = ha(a) = ¢(w; a + bs)

where hg3 represents the AND operation on the outputs of OR and NAND.

28/31

000e00

re of MLP

For each hidden layer in a multi-layer perceptron:
o The input vector = € R? is from the previous layer (or from the input data for the first layer).

o We define n perceptrons, each with independent weights w; € R? and a bias b; € R for
i€ [n]:={1,2,...,n}

hi(z) = ¢(w; = + b;)

where ¢ is the activation function.

@ The computed outputs h;(x) are stacked into an activation vector a € R", representing the
output of this layer:

al
az
an

where a; = h;(x) for each i.

29/31

Matrix-Vector Representation of MLP

To rewrite the MLP in matrix-vector form for each layer £:
o Define the weight matrix W € R"*? and the bias vector b € R™:

u;lT bl

w, bn,
where each w; € R? and b; represents the weights and bias for the i-th perceptron.
o Define the pre-activation vector z € R" as:
wi + by
z=Wax+b= :
wIa: + b,

This combines the weighted sum of the inputs from the previous layer.
@ Apply the activation function ¢ element-wise to z to obtain the activation vector a € R":

¢(w{ = + b1)
a=¢(z)= :
p(w, x + bn)

where ¢ is applied to each element of the pre-activation vector z.

30/31

Summary of MLP

An MLP with L layers can be defined in a recurrent manner: for each layer ¢ € [L],
R
z' = ¢(z"),

where ©‘ = a’ serves as the input to the next layer, and the initial input is 2° = @.

@ The MLP is also called a feed-forward network because the data flows from the input layer to
the output layer through hidden layers without any feedback loops.

@ Each hidden layer consists of ng perceptrons (or neurons), where n, is the width of the network.
© The total number of layers L defines the depth of the network.
Q

The final estimated output 9 = 2 can have multiple dimensions, depending on the task (e.g.,
classification or regression).

@ The width and depth are hyperparameters chosen by the network designer.

@ An MLP is capable of solving nonlinear problems that a single perceptron cannot handle.

How do we effectively select the weights W* and biases b‘?

31/31

	What is Deep Learning?
	Brief History of Neural Networks
	Perceptron
	Multilayer Perceptrons

